Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
203518949651260636910 ~1999
203521337162817069710 ~1997
2035336194070672399 ~1996
203540941122124564710 ~1997
2035421514070843039 ~1996
203546999162837599310 ~1997
2035472994070945999 ~1996
2035609434071218879 ~1996
2035708914071417839 ~1996
203571197122142718310 ~1997
2035722834071445679 ~1996
2035798914071597839 ~1996
2035802634071605279 ~1996
203584541122150724710 ~1997
203585939162868751310 ~1997
2035959234071918479 ~1996
203607977285051167910 ~1998
203615897162892717710 ~1997
203617277122170366310 ~1997
2036276634072553279 ~1996
203629901122177940710 ~1997
2036395314072790639 ~1996
203640313122184187910 ~1997
2036491194072982399 ~1996
2036502834073005679 ~1996
Exponent Prime Factor Digits Year
2036521914073043839 ~1996
203654197325846715310 ~1998
2036653314073306639 ~1996
2036663634073327279 ~1996
203673079203673079110 ~1998
203679599162943679310 ~1997
2036805114073610239 ~1996
2036894394073788799 ~1996
2036991834073983679 ~1996
2037002514074005039 ~1996
2037042714074085439 ~1996
2037082314074164639 ~1996
203710187162968149710 ~1997
2037129234074258479 ~1996
2037287514074575039 ~1996
2037291714074583439 ~1996
203729833325967732910 ~1998
203736241122241744710 ~1997
203738449448224587910 ~1998
2037432471018716235111 ~1999
2037443994074887999 ~1996
203747597162998077710 ~1997
203775961122265576710 ~1997
2037791394075582799 ~1996
203782801122269680710 ~1997
Exponent Prime Factor Digits Year
203783141122269884710 ~1997
2037864834075729679 ~1996
203788667163030933710 ~1997
2037976314075952639 ~1996
2038178514076357039 ~1996
2038203594076407199 ~1996
203820587163056469710 ~1997
2038218114076436239 ~1996
2038474914076949839 ~1996
203851561122310936710 ~1997
2038551114077102239 ~1996
2038565994077131999 ~1996
2038617114077234239 ~1996
2038685514077371039 ~1996
2038744794077489599 ~1996
203877517937836578310 ~1999
2038812594077625199 ~1996
2038848234077696479 ~1996
2038910634077821279 ~1996
2038930314077860639 ~1996
2038973394077946799 ~1996
2039053434078106879 ~1996
2039084994078169999 ~1996
2039152194078304399 ~1996
2039153394078306799 ~1996
Exponent Prime Factor Digits Year
2039159034078318079 ~1996
2039375514078751039 ~1996
2039390034078780079 ~1996
203945557122367334310 ~1997
2039486394078972799 ~1996
2039554314079108639 ~1996
2039594034079188079 ~1996
203961001122376600710 ~1997
203961113285545558310 ~1998
2039622114079244239 ~1996
2039715714079431439 ~1996
203973017163178413710 ~1997
2039780634079561279 ~1996
203978647203978647110 ~1998
2039857314079714639 ~1996
203986373122391823910 ~1997
2039899314079798639 ~1996
2039918634079837279 ~1996
203993219367187794310 ~1998
2039944194079888399 ~1996
203998097163198477710 ~1997
2040036714080073439 ~1996
204008657122405194310 ~1997
2040132594080265199 ~1996
2040185394080370799 ~1996
Home
4.739.325 digits
e-mail
25-04-20