Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1846572113693144239 ~1996
184658833110795299910 ~1997
1846625633693251279 ~1996
1846661993693323999 ~1996
184669973110801983910 ~1997
1846769393693538799 ~1996
184682453110809471910 ~1997
184685191184685191110 ~1997
184691293110814775910 ~1997
184693793258571310310 ~1998
1846996313693992639 ~1996
1846999193693998399 ~1996
184708217147766573710 ~1997
184708597110825158310 ~1997
184708631332475535910 ~1998
1847090393694180799 ~1996
1847110313694220639 ~1996
1847130713694261439 ~1996
184714157110828494310 ~1997
184719599147775679310 ~1997
1847223713694447439 ~1996
184729679147783743310 ~1997
184731251147785000910 ~1997
1847340593694681199 ~1996
1847343833694687679 ~1996
Exponent Prime Factor Digits Year
184735477110841286310 ~1997
184746179147796943310 ~1997
184749857110849914310 ~1997
184750957110850574310 ~1997
1847561633695123279 ~1996
184759901147807920910 ~1997
1847650793695301599 ~1996
184773661110864196710 ~1997
184779509147823607310 ~1997
184785493110871295910 ~1997
1847928492771892735111 ~2000
1847971433695942879 ~1996
184797257702229576710 ~1999
1847976113695952239 ~1996
184798241147838592910 ~1997
1847992433695984879 ~1996
184799701850078624710 ~1999
1848024593696049199 ~1996
1848047033696094079 ~1996
1848054593696109199 ~1996
1848163812069943467311 ~2000
184816417554449251110 ~1998
184825387184825387110 ~1997
184831363184831363110 ~1997
1848364193696728399 ~1996
Exponent Prime Factor Digits Year
1848443393696886799 ~1996
184846073110907643910 ~1997
184847077110908246310 ~1997
1848478913696957839 ~1996
1848494033696988079 ~1996
1848532433697064879 ~1996
184855243776392020710 ~1999
1848637793697275599 ~1996
1848664433697328879 ~1996
184869497258817295910 ~1998
1848714113697428239 ~1996
1848723233697446479 ~1996
184873397110924038310 ~1997
1848748313697496639 ~1996
1848767393697534799 ~1996
1848847433697694879 ~1996
184884941110930964710 ~1997
1848859193697718399 ~1996
1848883913697767839 ~1996
184889083184889083110 ~1997
184889519443734845710 ~1998
1848953033697906079 ~1996
1848983033697966079 ~1996
1849007393698014799 ~1996
1849039313698078639 ~1996
Exponent Prime Factor Digits Year
1849041233698082479 ~1996
184906747295850795310 ~1998
184912531295860049710 ~1998
1849162193698324399 ~1996
184928747147942997710 ~1997
1849422233698844479 ~1996
1849449233698898479 ~1996
1849475513698951039 ~1996
1849488713698977439 ~1996
184951427147961141710 ~1997
1849631393699262799 ~1996
184964033110978419910 ~1997
1849744793699489599 ~1996
1849791113699582239 ~1996
1849806713699613439 ~1996
184984337110990602310 ~1997
184986601110991960710 ~1997
1849866713699733439 ~1996
184989317110993590310 ~1997
1849897433699794879 ~1996
184992961295988737710 ~1998
184993801110996280710 ~1997
184997353406994176710 ~1998
1849977833699955679 ~1996
1850037713700075439 ~1996
Home
4.739.325 digits
e-mail
25-04-20