Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1831960313663920639 ~1996
183203017109921810310 ~1997
183212461879419812910 ~1999
1832143793664287599 ~1996
1832153393664306799 ~1996
183217009403077419910 ~1998
1832175713664351439 ~1996
183219791329795623910 ~1998
1832219531319198061711 ~1999
1832251313664502639 ~1996
1832342513664685039 ~1996
1832346713664693439 ~1996
183243913549731739110 ~1998
1832446433664892879 ~1996
1832468033664936079 ~1996
1832526233665052479 ~1996
1832579271356108659911 ~1999
183261523293218436910 ~1998
183262637109957582310 ~1997
1832661593665323199 ~1996
1832679113665358239 ~1996
1832773793665547599 ~1996
183281977109969186310 ~1997
183286577146629261710 ~1997
1832989313665978639 ~1996
Exponent Prime Factor Digits Year
1833077393666154799 ~1996
183313751146651000910 ~1997
1833163193666326399 ~1996
183317957146654365710 ~1997
183319537109991722310 ~1997
1833219593666439199 ~1996
183322091146657672910 ~1997
183328139146662511310 ~1997
1833345833666691679 ~1996
183338941110003364710 ~1997
1833442793666885599 ~1996
1833458033666916079 ~1996
183348937880074897710 ~1999
1833516113667032239 ~1996
183354113256695758310 ~1998
1833597233667194479 ~1996
1833614633667229279 ~1996
183371597110022958310 ~1997
183375547183375547110 ~1997
1833759713667519439 ~1996
1833775913667551839 ~1996
1833860393667720799 ~1996
1833958433667916879 ~1996
183404113110042467910 ~1997
1834068233668136479 ~1996
Exponent Prime Factor Digits Year
183411413440187391310 ~1998
1834175993668351999 ~1996
1834193393668386799 ~1996
1834245233668490479 ~1996
1834329713668659439 ~1996
1834338233668676479 ~1996
1834380113668760239 ~1996
183438929146751143310 ~1997
183444809880535083310 ~1999
183444953110066971910 ~1997
1834454033668908079 ~1996
1834468313668936639 ~1996
1834487633668975279 ~1996
183449033440277679310 ~1998
183450473110070283910 ~1997
1834546793669093599 ~1996
1834589393669178799 ~1996
183459919183459919110 ~1997
183461233110076739910 ~1997
1834667993669335999 ~1996
1834679393669358799 ~1996
1834745633669491279 ~1996
1834773831210950727911 ~1999
1834774913669549839 ~1996
1834796033669592079 ~1996
Exponent Prime Factor Digits Year
183482177550446531110 ~1998
1834949393669898799 ~1996
1834982513669965039 ~1996
1835015513670031039 ~1996
183503777146803021710 ~1997
1835114033670228079 ~1996
183511817110107090310 ~1997
1835175113670350239 ~1996
18351935917214115874312 ~2002
1835199113670398239 ~1996
1835230793670461599 ~1996
1835280713670561439 ~1996
1835306633670613279 ~1996
183533057256946279910 ~1998
183549287146839429710 ~1997
1835535233671070479 ~1996
183556027440534464910 ~1998
183560087146848069710 ~1997
183561647146849317710 ~1997
1835700833671401679 ~1996
183570787734283148110 ~1999
183571841110143104710 ~1997
1835730833671461679 ~1996
1835756993671513999 ~1996
183584923293735876910 ~1998
Home
4.739.325 digits
e-mail
25-04-20