Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
164599723691318836710 ~1998
1646024579876147439 ~1996
164602727131682181710 ~1997
1646074913292149839 ~1995
1646122433292244879 ~1995
1646143193292286399 ~1995
1646145593292291199 ~1995
1646177633292355279 ~1995
1646270179877621039 ~1996
164635711691469986310 ~1998
1646381393292762799 ~1995
1646384033292768079 ~1995
1646394593292789199 ~1995
1646399033292798079 ~1995
1646416433292832879 ~1995
1646474033292948079 ~1995
164653277131722621710 ~1997
1646575793293151599 ~1995
1646599193293198399 ~1995
1646601593293203199 ~1995
1646609393293218799 ~1995
1646630993293261999 ~1995
1646669513293339039 ~1995
1646704313293408639 ~1995
164672309131737847310 ~1997
Exponent Prime Factor Digits Year
1646763419880580479 ~1996
1646786393293572799 ~1995
1646887433293774879 ~1995
1646899913293799839 ~1995
1646920913293841839 ~1995
1646948513293897039 ~1995
164697163263515460910 ~1997
164698697230578175910 ~1997
1647007193294014399 ~1995
1647032393294064799 ~1995
1647034433294068879 ~1995
164704957263527931310 ~1997
1647191993294383999 ~1995
1647202193294404399 ~1995
1647208193294416399 ~1995
1647210713294421439 ~1995
1647247793294495599 ~1995
1647273233294546479 ~1995
1647293993294587999 ~1995
1647313313294626639 ~1995
164732389658929556110 ~1998
164733713494201139110 ~1998
164742437230639411910 ~1997
1647432593294865199 ~1995
164744417131795533710 ~1997
Exponent Prime Factor Digits Year
1647502313295004639 ~1995
1647597113295194239 ~1995
1647622193295244399 ~1995
1647643433295286879 ~1995
164764541131811632910 ~1997
1647652313295304639 ~1995
1647693833295387679 ~1995
1647712193295424399 ~1995
164782661131826128910 ~1997
1647832913295665839 ~1995
164786647164786647110 ~1997
1647936833295873679 ~1995
164793899131835119310 ~1997
1648120071087759246311 ~1999
1648131713296263439 ~1995
1648133393296266799 ~1995
1648163633296327279 ~1995
1648179593296359199 ~1995
1648282913296565839 ~1995
1648306219889837279 ~1996
1648322033296644079 ~1995
1648323833296647679 ~1995
1648334993296669999 ~1995
164834651131867720910 ~1997
1648347233296694479 ~1995
Exponent Prime Factor Digits Year
164836733494510199110 ~1998
164837339527479484910 ~1998
164839771164839771110 ~1997
1648402433296804879 ~1995
1648456979890741839 ~1996
1648477793296955599 ~1995
1648509233297018479 ~1995
1648552913297105839 ~1995
164866579164866579110 ~1997
1648670393297340799 ~1995
1648776139892656799 ~1996
164879009131903207310 ~1997
1648834433297668879 ~1995
1648840193297680399 ~1995
164886889395728533710 ~1998
1648895513297791039 ~1995
1648896113297792239 ~1995
1648914113297828239 ~1995
1648918193297836399 ~1995
1648984913297969839 ~1995
164899411164899411110 ~1997
1648994633297989279 ~1995
1649007833298015679 ~1995
1649009993298019999 ~1995
1649063179894379039 ~1996
Home
4.739.325 digits
e-mail
25-04-20