Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1835892713671785439 ~1996
183591757110155054310 ~1997
183594833257032766310 ~1998
1836029993672059999 ~1996
1836045113672090239 ~1996
1836070313672140639 ~1996
183607037146885629710 ~1997
1836102113672204239 ~1996
183624017110174410310 ~1997
183627553110176531910 ~1997
183630437110178262310 ~1997
183630817110178490310 ~1997
1836340793672681599 ~1996
183636293257090810310 ~1998
1836396113672792239 ~1996
183639719587647100910 ~1998
183639761146911808910 ~1997
1836399833672799679 ~1996
1836408833672817679 ~1996
183643049146914439310 ~1997
183648301110188980710 ~1997
1836493793672987599 ~1996
1836500633673001279 ~1996
1836525833673051679 ~1996
1836533993673067999 ~1996
Exponent Prime Factor Digits Year
1836536633673073279 ~1996
1836557393673114799 ~1996
1836636113673272239 ~1996
1836639233673278479 ~1996
1836640313673280639 ~1996
1836660233673320479 ~1996
1836663833673327679 ~1996
1836778313673556639 ~1996
183683791183683791110 ~1997
1836851633673703279 ~1996
1836960113673920239 ~1996
1836985193673970399 ~1996
183701533293922452910 ~1998
1837074833674149679 ~1996
1837117913674235839 ~1996
1837141433674282879 ~1996
1837171193674342399 ~1996
183717733110230639910 ~1997
1837215113674430239 ~1996
1837254713674509439 ~1996
183729607293967371310 ~1998
1837316513674633039 ~1996
1837317593674635199 ~1996
1837330313674660639 ~1996
1837514993675029999 ~1996
Exponent Prime Factor Digits Year
1837515593675031199 ~1996
183754799147003839310 ~1997
1837581713675163439 ~1996
1837597313675194639 ~1996
1837630433675260879 ~1996
183768097110260858310 ~1997
1837717793675435599 ~1996
1837729433675458879 ~1996
183776651147021320910 ~1997
1837823633675647279 ~1996
1837922393675844799 ~1996
183792781110275668710 ~1997
1838019113676038239 ~1996
1838087393676174799 ~1996
1838136113676272239 ~1996
1838207513676415039 ~1996
1838231633676463279 ~1996
1838241593676483199 ~1996
183825211183825211110 ~1997
1838254313676508639 ~1996
183826717110296030310 ~1997
1838275991617682871311 ~2000
1838295713676591439 ~1996
183830957110298574310 ~1997
183853073110311843910 ~1997
Exponent Prime Factor Digits Year
1838562233677124479 ~1996
1838572313677144639 ~1996
1838585993677171999 ~1996
183865067330957120710 ~1998
1838654993677309999 ~1996
183866233294185972910 ~1998
1838678633677357279 ~1996
183868459183868459110 ~1997
1838695793677391599 ~1996
183874421110324652710 ~1997
1838765033677530079 ~1996
1838792033677584079 ~1996
1838793233677586479 ~1996
1838796233677592479 ~1996
1838822993677645999 ~1996
1838835713677671439 ~1996
1838969633677939279 ~1996
183900553845942543910 ~1999
1839030292905667858311 ~2000
1839050633678101279 ~1996
183909331772419190310 ~1999
1839104393678208799 ~1996
183912193110347315910 ~1997
183916771183916771110 ~1997
1839205193678410399 ~1996
Home
4.739.325 digits
e-mail
25-04-20