Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
43360429211986720858423912 ~2022
43363248890386726497780712 ~2022
43364566495186729132990312 ~2022
43367457697186734915394312 ~2022
43373491598386746983196712 ~2022
43377163664386754327328712 ~2022
43379796434386759592868712 ~2022
43380616523986761233047912 ~2022
43390742972386781485944712 ~2022
43391688983986783377967912 ~2022
43393427909986786855819912 ~2022
43394128723186788257446312 ~2022
43397320088386794640176712 ~2022
4339928353371076...16357715 2025
43400834875186801669750312 ~2022
43406384564386812769128712 ~2022
43407801041986815602083912 ~2022
43409805071986819610143912 ~2022
43410037442386820074884712 ~2022
43412547185986825094371912 ~2022
43415075132386830150264712 ~2022
43415697547186831395094312 ~2022
43416287593186832575186312 ~2022
43422514829986845029659912 ~2022
43422697913986845395827912 ~2022
Exponent Prime Factor Dig. Year
43424944727986849889455912 ~2022
4342504285676865...64427116 2025
43435287337186870574674312 ~2022
43437443852386874887704712 ~2022
43442985403186885970806312 ~2022
43449645275986899290551912 ~2022
43451318507986902637015912 ~2022
43451550626386903101252712 ~2022
43453761835186907523670312 ~2022
43454664709186909329418312 ~2022
43454940734386909881468712 ~2022
43457091569986914183139912 ~2022
43457399822386914799644712 ~2022
43457664325186915328650312 ~2022
43458938587186917877174312 ~2022
43460590753186921181506312 ~2022
43460729423986921458847912 ~2022
43461207797986922415595912 ~2022
43466784203986933568407912 ~2022
43470583028386941166056712 ~2022
43477032809986954065619912 ~2022
43477273559986954547119912 ~2022
4348007935519043...05860914 2025
43481032652386962065304712 ~2022
4348334922431087...06075115 2025
Exponent Prime Factor Dig. Year
43487929357186975858714312 ~2022
43491231176386982462352712 ~2022
43491475961986982951923912 ~2022
43493585504386987171008712 ~2022
43494038209186988076418312 ~2022
43494572327986989144655912 ~2022
43494832112386989664224712 ~2022
43499776976386999553952712 ~2022
43501839253187003678506312 ~2022
43502696671187005393342312 ~2022
43502864935187005729870312 ~2022
43508162725187016325450312 ~2022
43508192335187016384670312 ~2022
43509577925987019155851912 ~2022
43510490873987020981747912 ~2022
43514385722387028771444712 ~2022
43516136273987032272547912 ~2022
43518599030387037198060712 ~2022
43521638069987043276139912 ~2022
43523328601187046657202312 ~2022
43526588567987053177135912 ~2022
43527946069187055892138312 ~2022
43536007586387072015172712 ~2022
43536659630387073319260712 ~2022
43537768880387075537760712 ~2022
Exponent Prime Factor Dig. Year
43540565117987081130235912 ~2022
43541454008387082908016712 ~2022
43543189607987086379215912 ~2022
43546572737987093145475912 ~2022
43549009736387098019472712 ~2022
43550722379987101444759912 ~2022
43554384089987108768179912 ~2022
43561360664387122721328712 ~2022
43561853144387123706288712 ~2022
43566391136387132782272712 ~2022
43566589490387133178980712 ~2022
43567485835187134971670312 ~2022
43568624125187137248250312 ~2022
43571105869187142211738312 ~2022
43573075819187146151638312 ~2022
43573468861187146937722312 ~2022
43575912728387151825456712 ~2022
43580464265987160928531912 ~2022
43582111760387164223520712 ~2022
43583466152387166932304712 ~2022
4358365755836363...03511914 2025
43586587346387173174692712 ~2022
43588752404387177504808712 ~2022
43588753517987177507035912 ~2022
43589185580387178371160712 ~2022
Home
5.232.152 digits
e-mail
25-12-07