Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
43085096879986170193759912 ~2022
43085800037986171600075912 ~2022
43087059236386174118472712 ~2022
43097900053186195800106312 ~2022
43098368411986196736823912 ~2022
4309877023818964...09524914 2025
43100358301186200716602312 ~2022
4310155090871137...39896915 2025
4310354662376465...93555114 2025
43106036443186212072886312 ~2022
43111393475986222786951912 ~2022
43118437982386236875964712 ~2022
43119662821186239325642312 ~2022
43120903079986241806159912 ~2022
43122268769986244537539912 ~2022
43123585183186247170366312 ~2022
43125823229986251646459912 ~2022
43126595948386253191896712 ~2022
4312865188919402...11823914 2025
43133177768386266355536712 ~2022
43136081276386272162552712 ~2022
43142488081186284976162312 ~2022
43151082347986302164695912 ~2022
43152848468386305696936712 ~2022
43153937180386307874360712 ~2022
Exponent Prime Factor Dig. Year
43157403944386314807888712 ~2022
43158110459986316220919912 ~2022
43159010389186318020778312 ~2022
43159621621186319243242312 ~2022
43163349764386326699528712 ~2022
43163696756386327393512712 ~2022
43164362048386328724096712 ~2022
43170725437186341450874312 ~2022
43175250671986350501343912 ~2022
43175532614386351065228712 ~2022
43177765388386355530776712 ~2022
43180874510386361749020712 ~2022
43183625191186367250382312 ~2022
4318694679591010...50240715 2025
43188812729986377625459912 ~2022
43193078198386386156396712 ~2022
43194953147986389906295912 ~2022
4319503424515528...83372914 2025
43196186573986392373147912 ~2022
4319818912391736...27807915 2025
4319833354791425...70807115 2025
43200140599186400281198312 ~2022
43202649170386405298340712 ~2022
43202676458386405352916712 ~2022
43202696441986405392883912 ~2022
Exponent Prime Factor Dig. Year
43210589729986421179459912 ~2022
43212642335986425284671912 ~2022
43213696831186427393662312 ~2022
43218486731986436973463912 ~2022
43222129373986444258747912 ~2022
43225496303986450992607912 ~2022
43227540467986455080935912 ~2022
43233341768386466683536712 ~2022
43240364915986480729831912 ~2022
43245207050386490414100712 ~2022
43245852823186491705646312 ~2022
43253925815986507851631912 ~2022
43255912909186511825818312 ~2022
43258020469186516040938312 ~2022
43261282583986522565167912 ~2022
43270272163186540544326312 ~2022
43270661138386541322276712 ~2022
43276582163986553164327912 ~2022
43278624991186557249982312 ~2022
43278671348386557342696712 ~2022
43289709275986579418551912 ~2022
43290030133186580060266312 ~2022
43296756518386593513036712 ~2022
43299015521986598031043912 ~2022
43299502651186599005302312 ~2022
Exponent Prime Factor Dig. Year
43300294325986600588651912 ~2022
43302048998386604097996712 ~2022
4330210338172243...51720715 2025
43302184423186604368846312 ~2022
43302998243986605996487912 ~2022
43304515706386609031412712 ~2022
43307513180386615026360712 ~2022
43309271851186618543702312 ~2022
43309762751986619525503912 ~2022
43312108855186624217710312 ~2022
43312982353186625964706312 ~2022
4331357964198749...87663914 2025
4331458494592529...08405715 2025
43320421697986640843395912 ~2022
43328037211186656074422312 ~2022
43332067331986664134663912 ~2022
43336472756386672945512712 ~2022
43342436407186684872814312 ~2022
43342879625986685759251912 ~2022
43344320453986688640907912 ~2022
43344593185186689186370312 ~2022
43348130624386696261248712 ~2022
43351131053986702262107912 ~2022
43355692609186711385218312 ~2022
43357258399186714516798312 ~2022
Home
5.232.152 digits
e-mail
25-12-07