Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
33481202077166962404154312 ~2021
33483326957966966653915912 ~2021
33484429001966968858003912 ~2021
3348483237294486...37968714 2025
33489092825966978185651912 ~2021
33490815128366981630256712 ~2021
33499537136366999074272712 ~2021
33499593623966999187247912 ~2021
33499611481166999222962312 ~2021
33508554398367017108796712 ~2021
33510641132367021282264712 ~2021
3351112655574691...77980115 2025
33514550509167029101018312 ~2021
33519471643167038943286312 ~2021
33523968356367047936712712 ~2021
33524989393167049978786312 ~2021
33525095807967050191615912 ~2021
3352651672038381...80075114 2025
33527759341167055518682312 ~2021
33528315122367056630244712 ~2021
33531067633167062135266312 ~2021
33535353044367070706088712 ~2021
33537597023967075194047912 ~2021
33539520133167079040266312 ~2021
33539771977167079543954312 ~2021
Exponent Prime Factor Dig. Year
33547476991167094953982312 ~2021
33549519608367099039216712 ~2021
33552678293967105356587912 ~2021
33555694807167111389614312 ~2021
3355789399096058...44976917 2025
33560251733967120503467912 ~2021
3356063462875906...94651314 2024
33560836745967121673491912 ~2021
3356501301591691...60013715 2025
33565277246367130554492712 ~2021
33565367285967130734571912 ~2021
33565817168367131634336712 ~2021
33568314157167136628314312 ~2021
33568339007967136678015912 ~2021
33569739937167139479874312 ~2021
33569764979967139529959912 ~2021
33569957953167139915906312 ~2021
33570634505967141269011912 ~2021
3357169804931047...91381715 2025
33573189469167146378938312 ~2021
33577738721967155477443912 ~2021
33579597224367159194448712 ~2021
3358102110978260...92986314 2025
3358612705572196...94427915 2025
33591079280367182158560712 ~2021
Exponent Prime Factor Dig. Year
33593848741167187697482312 ~2021
33596035543167192071086312 ~2021
33597019748367194039496712 ~2021
33599974457967199948915912 ~2021
3360082422616652...96767914 2024
33602537498367205074996712 ~2021
33605278259967210556519912 ~2021
3360671943711881...88477714 2024
33608208373167216416746312 ~2021
33609231218367218462436712 ~2021
33609751499967219502999912 ~2021
33611610079167223220158312 ~2021
33612964589967225929179912 ~2021
33613765664367227531328712 ~2021
33614441153967228882307912 ~2021
3361612516193496...16837714 2024
33616220864367232441728712 ~2021
33616470827967232941655912 ~2021
33616922930367233845860712 ~2021
3361732144275177...02175914 2024
33619135555167238271110312 ~2021
33619678622367239357244712 ~2021
33620768651967241537303912 ~2021
33621244481967242488963912 ~2021
33625833611967251667223912 ~2021
Exponent Prime Factor Dig. Year
33626012077167252024154312 ~2021
33627109007967254218015912 ~2021
33627296389167254592778312 ~2021
3362987226671614...68801714 2024
33633546535167267093070312 ~2021
33634013729967268027459912 ~2021
33638686537167277373074312 ~2021
33639324455967278648911912 ~2021
33640431338367280862676712 ~2021
33640899703167281799406312 ~2021
33643722794367287445588712 ~2021
33644728699167289457398312 ~2021
33645495065967290990131912 ~2021
3364780655779623...75502314 2025
33651243647967302487295912 ~2021
33651833971167303667942312 ~2021
33652953878367305907756712 ~2021
33656226089967312452179912 ~2021
33657386324367314772648712 ~2021
3365886945012625...17107914 2024
33662418601167324837202312 ~2021
33669168422367338336844712 ~2021
33672950993967345901987912 ~2021
33673812194367347624388712 ~2021
33674023177167348046354312 ~2021
Home
5.037.460 digits
e-mail
25-09-07