Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18299407921136598815842312 ~2019
18300731611136601463222312 ~2019
18301453178336602906356712 ~2019
18301902841136603805682312 ~2019
18303903692336607807384712 ~2019
18304816375136609632750312 ~2019
1830492973492452...84476714 2024
18308154463136616308926312 ~2019
1830872964192526...90582314 2024
18309703537136619407074312 ~2019
18310101314336620202628712 ~2019
18310790945936621581891912 ~2019
1831093393971344...11739915 2025
18311780882336623561764712 ~2019
18312848858336625697716712 ~2019
18315455930336630911860712 ~2019
18317471449136634942898312 ~2019
18317804306336635608612712 ~2019
18320693243936641386487912 ~2019
18323123389136646246778312 ~2019
18324238961936648477923912 ~2019
18325122272336650244544712 ~2019
18325952480336651904960712 ~2019
18326232284336652464568712 ~2019
18328666921136657333842312 ~2019
Exponent Prime Factor Dig. Year
18329247761936658495523912 ~2019
18330121622336660243244712 ~2019
18331506866336663013732712 ~2019
18332300923136664601846312 ~2019
18333784405136667568810312 ~2019
18334915820336669831640712 ~2019
18335429729936670859459912 ~2019
18335679128336671358256712 ~2019
18341060303936682120607912 ~2019
18341708047136683416094312 ~2019
18342286597136684573194312 ~2019
18342954259136685908518312 ~2019
18345608707136691217414312 ~2019
1834560963492605...68155914 2024
18345615079136691230158312 ~2019
18346215445136692430890312 ~2019
18346279657136692559314312 ~2019
18347005463936694010927912 ~2019
18347596547936695193095912 ~2019
18349574059136699148118312 ~2019
18350479685936700959371912 ~2019
18351556085936703112171912 ~2019
18352632524336705265048712 ~2019
18352740277136705480554312 ~2019
18354117667136708235334312 ~2019
Exponent Prime Factor Dig. Year
18356616073136713232146312 ~2019
18358139012336716278024712 ~2019
18358841366336717682732712 ~2019
18359154157136718308314312 ~2019
1836060041231762...39580914 2025
18361134967136722269934312 ~2019
18362062598336724125196712 ~2019
18362396731136724793462312 ~2019
18362404922336724809844712 ~2019
18364195943936728391887912 ~2019
18365283467936730566935912 ~2019
1836584412471366...28776915 2023
1836771068293195...58824714 2024
18368118827936736237655912 ~2019
1836862307479257...29648914 2025
1836995957994445...18335914 2023
18370402661936740805323912 ~2019
18372272756336744545512712 ~2019
18372459841136744919682312 ~2019
18372957026336745914052712 ~2019
18373308569936746617139912 ~2019
18373425866336746851732712 ~2019
18373739483936747478967912 ~2019
18373985792336747971584712 ~2019
18377387852336754775704712 ~2019
Exponent Prime Factor Dig. Year
18377794058336755588116712 ~2019
18379299133136758598266312 ~2019
18379878913136759757826312 ~2019
18380146289936760292579912 ~2019
18380189353136760378706312 ~2019
18380579438336761158876712 ~2019
18380806064336761612128712 ~2019
1838314269132757...03695114 2024
18384613153136769226306312 ~2019
18384726125936769452251912 ~2019
18386072198336772144396712 ~2019
18389623867136779247734312 ~2019
18389845597136779691194312 ~2019
18390191519936780383039912 ~2019
18390196291136780392582312 ~2019
1839067006091070...75443915 2025
18391835335136783670670312 ~2019
18392627003936785254007912 ~2019
18392960828336785921656712 ~2019
1839317925712979...39650314 2024
18393364745936786729491912 ~2019
18394290877136788581754312 ~2019
18395416039136790832078312 ~2019
18396131360336792262720712 ~2019
18396163807136792327614312 ~2019
Home
5.142.307 digits
e-mail
25-10-26