Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18189782381936379564763912 ~2019
18191630591936383261183912 ~2019
18192205961936384411923912 ~2019
18192605927936385211855912 ~2019
1819273945031151...20399116 2025
18194883575936389767151912 ~2019
18196265155136392530310312 ~2019
18196510664336393021328712 ~2019
18196592804336393185608712 ~2019
18197901893936395803787912 ~2019
18198514364336397028728712 ~2019
18204222920336408445840712 ~2019
18204266498336408532996712 ~2019
18204337375136408674750312 ~2019
18205568246336411136492712 ~2019
18207751213136415502426312 ~2019
18209074076336418148152712 ~2019
1820961749272512...13992714 2024
18211003415936422006831912 ~2019
18211065025136422130050312 ~2019
18212883635936425767271912 ~2019
18213877289936427754579912 ~2019
18214555567136429111134312 ~2019
18216429992336432859984712 ~2019
18217128107936434256215912 ~2019
Exponent Prime Factor Dig. Year
1821882631333024...68007914 2024
18219509729936439019459912 ~2019
18219559538336439119076712 ~2019
18219750221936439500443912 ~2019
18219795019136439590038312 ~2019
18219842222336439684444712 ~2019
18220166153936440332307912 ~2019
18220919513936441839027912 ~2019
1822111341072514...50676714 2024
1822208185316887...40471914 2025
18222121033136444242066312 ~2019
18223262533136446525066312 ~2019
18224169710336448339420712 ~2019
18226422596336452845192712 ~2019
18226946119136453892238312 ~2019
18229351808336458703616712 ~2019
18230220133136460440266312 ~2019
18231069014336462138028712 ~2019
18231400694336462801388712 ~2019
1823292307519517...45202314 2023
18234394891136468789782312 ~2019
18236667785936473335571912 ~2019
18237657932336475315864712 ~2019
18239385217136478770434312 ~2019
18240662035136481324070312 ~2019
Exponent Prime Factor Dig. Year
18241178714336482357428712 ~2019
18241212343136482424686312 ~2019
18243320927936486641855912 ~2019
18244311152336488622304712 ~2019
18247398611936494797223912 ~2019
18249361208336498722416712 ~2019
18250459853936500919707912 ~2019
18250835303936501670607912 ~2019
18251077967936502155935912 ~2019
18251114741936502229483912 ~2019
1825123730473394...38674314 2024
18253075004336506150008712 ~2019
18253468907936506937815912 ~2019
18253877780336507755560712 ~2019
18255577145936511154291912 ~2019
18256544795936513089591912 ~2019
18256700917136513401834312 ~2019
18256879339136513758678312 ~2019
1825690243019895...17114314 2023
18258019736336516039472712 ~2019
18263650909136527301818312 ~2019
18263891087936527782175912 ~2019
18264009878336528019756712 ~2019
1826599929434274...34866314 2023
18267347330336534694660712 ~2019
Exponent Prime Factor Dig. Year
18268067455136536134910312 ~2019
18268454651936536909303912 ~2019
18271340311136542680622312 ~2019
18271601081936543202163912 ~2019
18272104141136544208282312 ~2019
18272274182336544548364712 ~2019
18276838937936553677875912 ~2019
18277918016336555836032712 ~2019
18278564381936557128763912 ~2019
18282340340336564680680712 ~2019
1828294489875558...49204914 2024
18284281771136568563542312 ~2019
18285244993136570489986312 ~2019
18287749991936575499983912 ~2019
18287753063936575506127912 ~2019
18289227583136578455166312 ~2019
18290374145936580748291912 ~2019
18292743452336585486904712 ~2019
1829376714373475...57303114 2025
18294383605136588767210312 ~2019
18294544477136589088954312 ~2019
18295056637136590113274312 ~2019
18297887651936595775303912 ~2019
18298256423936596512847912 ~2019
18298429715936596859431912 ~2019
Home
5.142.307 digits
e-mail
25-10-26