Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17227244414334454488828712 ~2019
1722824902211343...23723914 2024
17228542399134457084798312 ~2019
17229166627134458333254312 ~2019
17230484750334460969500712 ~2019
17230918943934461837887912 ~2019
17234321429934468642859912 ~2019
17234978120334469956240712 ~2019
17235660439134471320878312 ~2019
17235755534334471511068712 ~2019
17235892981134471785962312 ~2019
17237480576334474961152712 ~2019
1723802501391313...60591915 2023
17238213554334476427108712 ~2019
17239250977134478501954312 ~2019
17239615091934479230183912 ~2019
17240381033934480762067912 ~2019
17241127052334482254104712 ~2019
17241337418334482674836712 ~2019
17241648235134483296470312 ~2019
17241721766334483443532712 ~2019
17241812717934483625435912 ~2019
17242630859934485261719912 ~2019
1724282375634586...19175914 2023
17242958309934485916619912 ~2019
Exponent Prime Factor Dig. Year
17245260224334490520448712 ~2019
17245544936334491089872712 ~2019
1724674318792104...68923914 2024
17246753792334493507584712 ~2019
17247621716334495243432712 ~2019
17247971597934495943195912 ~2019
1724798065797206...88706315 2025
17248835707134497671414312 ~2019
17250148154334500296308712 ~2019
17250349586334500699172712 ~2019
17250449831934500899663912 ~2019
17251087853934502175707912 ~2019
17253605243934507210487912 ~2019
17253697721934507395443912 ~2019
17254065383934508130767912 ~2019
17254850909934509701819912 ~2019
1725522506278006...29092914 2025
1725650640434555...90735314 2024
17256844819134513689638312 ~2019
17256983285934513966571912 ~2019
17258821064334517642128712 ~2019
17260287065934520574131912 ~2019
17260338482334520676964712 ~2019
17261650484334523300968712 ~2019
17262511939134525023878312 ~2019
Exponent Prime Factor Dig. Year
1726392415735148...37068715 2023
17265567221934531134443912 ~2019
17268332411934536664823912 ~2019
17268395198334536790396712 ~2019
17268877229934537754459912 ~2019
17270110093134540220186312 ~2019
17270471945934540943891912 ~2019
17271423961134542847922312 ~2019
17272803331134545606662312 ~2019
17274578438334549156876712 ~2019
17276264561934552529123912 ~2019
17277601952334555203904712 ~2019
17278632065934557264131912 ~2019
17279316367134558632734312 ~2019
17280387245934560774491912 ~2019
17280715496334561430992712 ~2019
17281261772334562523544712 ~2019
17283335855934566671711912 ~2019
1728609059931360...97689716 2024
17286526181934573052363912 ~2019
17286893240334573786480712 ~2019
17286971459934573942919912 ~2019
17287706695134575413390312 ~2019
17288085302334576170604712 ~2019
1728854178972984...29022315 2023
Exponent Prime Factor Dig. Year
17289665651934579331303912 ~2019
17289921613134579843226312 ~2019
17290875674334581751348712 ~2019
17295113633934590227267912 ~2019
17296565126334593130252712 ~2019
17297369335134594738670312 ~2019
17299275296334598550592712 ~2019
17300250349134600500698312 ~2019
17301878215134603756430312 ~2019
17302692433134605384866312 ~2019
17303122225134606244450312 ~2019
17304198566334608397132712 ~2019
17305845398334611690796712 ~2019
17306357762334612715524712 ~2019
17306921995134613843990312 ~2019
17307355208334614710416712 ~2019
17308526761134617053522312 ~2019
17308637600334617275200712 ~2019
17309631377934619262755912 ~2019
1731150468797063...12663314 2023
17311573903134623147806312 ~2019
17313596696334627193392712 ~2019
17314362625134628725250312 ~2019
1731471256733739...14536914 2024
17316574021134633148042312 ~2019
Home
5.142.307 digits
e-mail
25-10-26