Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17034461507934068923015912 ~2019
17035080578334070161156712 ~2019
17036266073934072532147912 ~2019
17038936555134077873110312 ~2019
17040162637134080325274312 ~2019
17040748853934081497707912 ~2019
17041096628334082193256712 ~2019
17041236398334082472796712 ~2019
17041877162334083754324712 ~2019
17043015545934086031091912 ~2019
17045670434334091340868712 ~2019
17046825943134093651886312 ~2019
17048829647934097659295912 ~2019
17049985051134099970102312 ~2019
17050182227934100364455912 ~2019
17051319161934102638323912 ~2019
1705467148099864...45525715 2025
17054894666334109789332712 ~2019
17056825550334113651100712 ~2019
17059376963934118753927912 ~2019
17062001660334124003320712 ~2019
17063150329134126300658312 ~2019
17063692958334127385916712 ~2019
17063767040334127534080712 ~2019
17064223670334128447340712 ~2019
Exponent Prime Factor Dig. Year
17065467769134130935538312 ~2019
17066470088334132940176712 ~2019
17066710490334133420980712 ~2019
17067032573934134065147912 ~2019
17068451564334136903128712 ~2019
17072239759134144479518312 ~2019
17072991848334145983696712 ~2019
17073720617934147441235912 ~2019
17074068101934148136203912 ~2019
1707711198913176...29972714 2024
17078173321134156346642312 ~2019
1707897658798095...02664714 2023
1707928321573552...08865714 2024
17079975935934159951871912 ~2019
17080160537934160321075912 ~2019
17080519004334161038008712 ~2019
17080633561134161267122312 ~2019
17082544622334165089244712 ~2019
1708280777275821...89361715 2025
17083508015934167016031912 ~2019
17084538535134169077070312 ~2019
17084565620334169131240712 ~2019
17085218095134170436190312 ~2019
17087439355134174878710312 ~2019
17088883783134177767566312 ~2019
Exponent Prime Factor Dig. Year
17089048244334178096488712 ~2019
17090874955134181749910312 ~2019
17091122177934182244355912 ~2019
17091169493934182338987912 ~2019
1709125782596460...58190314 2025
17091863881134183727762312 ~2019
17091927287934183854575912 ~2019
1709276909638922...68268714 2025
17093567029134187134058312 ~2019
17096153453934192306907912 ~2019
17096293562334192587124712 ~2019
17097232699134194465398312 ~2019
17099676830334199353660712 ~2019
17100433855134200867710312 ~2019
17101187353134202374706312 ~2019
17101721489934203442979912 ~2019
17101914025134203828050312 ~2019
17102444185134204888370312 ~2019
17103766529934207533059912 ~2019
17104773203934209546407912 ~2019
17105085740334210171480712 ~2019
17105118265134210236530312 ~2019
17105473753134210947506312 ~2019
17106903359934213806719912 ~2019
17107057238334214114476712 ~2019
Exponent Prime Factor Dig. Year
17108438156334216876312712 ~2019
17108531771934217063543912 ~2019
17110125151134220250302312 ~2019
1711135012493388...24730314 2024
1711330696072546...57521715 2025
17114560159134229120318312 ~2019
17115287732334230575464712 ~2019
17116738412334233476824712 ~2019
17117403757134234807514312 ~2019
17117438603934234877207912 ~2019
17117955020334235910040712 ~2019
17118529172334237058344712 ~2019
17118587648334237175296712 ~2019
17119880681934239761363912 ~2019
17120422135134240844270312 ~2019
17121207145134242414290312 ~2019
17121337969134242675938312 ~2019
17121487178334242974356712 ~2019
17121866567934243733135912 ~2019
17128750345134257500690312 ~2019
17128775840334257551680712 ~2019
17128831556334257663112712 ~2019
17129190307134258380614312 ~2019
17130084836334260169672712 ~2019
17130325625934260651251912 ~2019
Home
5.142.307 digits
e-mail
25-10-26