Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12086169152324172338304712 ~2018
12086170574324172341148712 ~2018
12086190033772517140202312 ~2019
12086465753372518794519912 ~2019
12088118609924176237219912 ~2018
12089412965924178825931912 ~2018
12089479751924178959503912 ~2018
12090012311924180024623912 ~2018
12090175268324180350536712 ~2018
12091834537124183669074312 ~2018
12091891250324183782500712 ~2018
12092021783924184043567912 ~2018
12092507240324185014480712 ~2018
12092935877924185871755912 ~2018
1209299059331644...20688914 2024
12094954066172569724396712 ~2019
12095157283124190314566312 ~2018
12095202353924190404707912 ~2018
12095467879124190935758312 ~2018
12095935664324191871328712 ~2018
12095992694324191985388712 ~2018
12096600597772579603586312 ~2019
12097217528324194435056712 ~2018
12098686837124197373674312 ~2018
12099741263924199482527912 ~2018
Exponent Prime Factor Dig. Year
12099862859924199725719912 ~2018
1210077895573388...07596114 2025
12101017297124202034594312 ~2018
12101017581772606105490312 ~2019
12102022439924204044879912 ~2018
12102071976172612431856712 ~2019
12103386668324206773336712 ~2018
12103531039124207062078312 ~2018
12104933171924209866343912 ~2018
12106324163924212648327912 ~2018
12106679468324213358936712 ~2018
12106756376324213512752712 ~2018
12107280335924214560671912 ~2018
12107586101924215172203912 ~2018
12108277952324216555904712 ~2018
12109846676324219693352712 ~2018
12109963326172659779956712 ~2019
12110203483124220406966312 ~2018
12110513723924221027447912 ~2018
12110751683924221503367912 ~2018
12112325329124224650658312 ~2018
12112519213124225038426312 ~2018
12112894717124225789434312 ~2018
12112899110324225798220712 ~2018
12113220488324226440976712 ~2018
Exponent Prime Factor Dig. Year
12113458027124226916054312 ~2018
12113641277924227282555912 ~2018
12114272388172685634328712 ~2019
12114474860324228949720712 ~2018
12115357051124230714102312 ~2018
12115361084324230722168712 ~2018
12115742820172694456920712 ~2019
12116284639772697707838312 ~2019
12116440137772698640826312 ~2019
12116564253772699385522312 ~2019
12116615597372699693583912 ~2019
12116698248172700189488712 ~2019
12116859794324233719588712 ~2018
12117103520324234207040712 ~2018
12117510422324235020844712 ~2018
12117753629924235507259912 ~2018
1211788601417343...24544714 2024
12118435205924236870411912 ~2018
12119200019924238400039912 ~2018
12119611111124239222222312 ~2018
12119867636324239735272712 ~2018
12120033179372720199075912 ~2019
12120883721924241767443912 ~2018
12121038853124242077706312 ~2018
1212171251112327...02131314 2024
Exponent Prime Factor Dig. Year
12122894366324245788732712 ~2018
12122910113924245820227912 ~2018
12123359705924246719411912 ~2018
12125121950324250243900712 ~2018
12126197057924252394115912 ~2018
12127449092324254898184712 ~2018
12128475017924256950035912 ~2018
12129754682324259509364712 ~2018
12130168179772781009078312 ~2019
12130438369124260876738312 ~2018
12130544401772783266410312 ~2019
12131062757924262125515912 ~2018
12131510273924263020547912 ~2018
1213154003176987...58259314 2024
12131598938324263197876712 ~2018
12131825551124263651102312 ~2018
12132206501924264413003912 ~2018
12132210425924264420851912 ~2018
12132747834172796487004712 ~2019
12134334121124268668242312 ~2018
12134768642324269537284712 ~2018
1213540836372038...05101714 2024
12135867767924271735535912 ~2018
12136351588172818109528712 ~2019
12136603401772819620410312 ~2019
Home
5.142.307 digits
e-mail
25-10-26