Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13631836967927263673935912 ~2018
1363209056634190...00806315 2025
1363230527294569...74760915 2025
13633455965927266911931912 ~2018
13633463005127266926010312 ~2018
13634771750327269543500712 ~2018
13634789809127269579618312 ~2018
13639841929127279683858312 ~2018
13640796869927281593739912 ~2018
13641960123781851760742312 ~2019
13643646284327287292568712 ~2018
13644408549781866451298312 ~2019
13644433759127288867518312 ~2018
13645947481381875684887912 ~2019
13646321653127292643306312 ~2018
13647167309927294334619912 ~2018
13647361436327294722872712 ~2018
13649315516327298631032712 ~2018
13649550728327299101456712 ~2018
13650225860327300451720712 ~2018
13651047236327302094472712 ~2018
13652754299927305508599912 ~2018
13653414389927306828779912 ~2018
13653500707127307001414312 ~2018
13654125001127308250002312 ~2018
Exponent Prime Factor Dig. Year
13654725788327309451576712 ~2018
13655362799927310725599912 ~2018
13655674963381934049779912 ~2019
13656861349127313722698312 ~2018
13658439067127316878134312 ~2018
13659204485927318408971912 ~2018
13661359142327322718284712 ~2018
13664801947127329603894312 ~2018
13665172616327330345232712 ~2018
13665420889127330841778312 ~2018
13665428011127330856022312 ~2018
13666285273127332570546312 ~2018
13667602202327335204404712 ~2018
13667695668182006174008712 ~2019
13667789675927335579351912 ~2018
13668035672327336071344712 ~2018
13668556819127337113638312 ~2018
13670258497127340516994312 ~2018
13670548499927341096999912 ~2018
13670698315127341396630312 ~2018
13670795405927341590811912 ~2018
13670845271927341690543912 ~2018
13672732916327345465832712 ~2018
13673968475927347936951912 ~2018
1367505674894895...16106314 2024
Exponent Prime Factor Dig. Year
13675076723927350153447912 ~2018
13675566359382053398155912 ~2019
13675581443927351162887912 ~2018
13676060305382056361831912 ~2019
13676340964182058045784712 ~2019
13676784961382060709767912 ~2019
13677207626327354415252712 ~2018
13678612063127357224126312 ~2018
13678737761927357475523912 ~2018
13679021215127358042430312 ~2018
13679035903127358071806312 ~2018
13680692964182084157784712 ~2019
13681802021927363604043912 ~2018
13682966275127365932550312 ~2018
13683135946182098815676712 ~2019
13685067745127370135490312 ~2018
13686558440327373116880712 ~2018
13687574172182125445032712 ~2019
1368830951237473...93715914 2025
13690171721927380343443912 ~2018
13691323005782147938034312 ~2019
13691372294327382744588712 ~2018
13694538986327389077972712 ~2018
13695067667927390135335912 ~2018
13696118719782176712318312 ~2019
Exponent Prime Factor Dig. Year
13696666523927393333047912 ~2018
13696977584327393955168712 ~2018
13697249354327394498708712 ~2018
13697571965927395143931912 ~2018
13697772025127395544050312 ~2018
13697819816327395639632712 ~2018
13698137803382188826819912 ~2019
13700840933927401681867912 ~2018
13701331111127402662222312 ~2018
13701734888327403469776712 ~2018
1370221956312767...51746314 2024
13702391675927404783351912 ~2018
13702990463382217942779912 ~2019
13705166471927410332943912 ~2018
13705499569127410999138312 ~2018
13706297837927412595675912 ~2018
1370664515416469...12735314 2025
13706665584182239993504712 ~2019
13707542941127415085882312 ~2018
13707770960327415541920712 ~2018
13707775061927415550123912 ~2018
1370851299133509...25772914 2023
13708927787927417855575912 ~2018
13711556300327423112600712 ~2018
13712635394327425270788712 ~2018
Home
5.037.460 digits
e-mail
25-09-07