Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9701145626319402291252712 ~2017
9702480179919404960359912 ~2017
9702506510319405013020712 ~2017
9702975149919405950299912 ~2017
9703779793119407559586312 ~2017
9704275058319408550116712 ~2017
9704901505358229409031912 ~2018
9705426677977643413423312 ~2018
9706077563919412155127912 ~2017
9708167339919416334679912 ~2017
9708317599358249905595912 ~2018
9708647881358251887287912 ~2018
9709807934319419615868712 ~2017
9710264563119420529126312 ~2017
9710518583919421037167912 ~2017
9710585533119421171066312 ~2017
9710612563119421225126312 ~2017
9710756198319421512396712 ~2017
9711200729919422401459912 ~2017
9712235713119424471426312 ~2017
9713046505119426093010312 ~2017
9714321421119428642842312 ~2017
9715438103919430876207912 ~2017
971562500531770...59656715 2023
9715821697119431643394312 ~2017
Exponent Prime Factor Dig. Year
9715914064777727312517712 ~2018
9717937167758307623006312 ~2018
9718013809119436027618312 ~2017
9720009161919440018323912 ~2017
9720258205119440516410312 ~2017
9720825785919441651571912 ~2017
9720838273119441676546312 ~2017
9721182787758327096726312 ~2018
9721317957758327907746312 ~2018
9721569425919443138851912 ~2017
9721959434977775675479312 ~2018
9722166233919444332467912 ~2017
9723489823119446979646312 ~2017
9724174943919448349887912 ~2017
9724660604319449321208712 ~2017
9725072095119450144190312 ~2017
9725362031919450724063912 ~2017
9725544848319451089696712 ~2017
9725619973119451239946312 ~2017
9725822261919451644523912 ~2017
9725996990319451993980712 ~2017
9726164624319452329248712 ~2017
9726747773919453495547912 ~2017
9728402402319456804804712 ~2017
9728531725177828253800912 ~2018
Exponent Prime Factor Dig. Year
9728542757919457085515912 ~2017
9728607275919457214551912 ~2017
9728748776319457497552712 ~2017
9729600535119459201070312 ~2017
9729622892319459245784712 ~2017
9729711113919459422227912 ~2017
9729715687177837725496912 ~2018
9729763352319459526704712 ~2017
9731498005119462996010312 ~2017
9731705857119463411714312 ~2017
9732074138319464148276712 ~2017
9732338660319464677320712 ~2017
9732609581919465219163912 ~2017
9732987103119465974206312 ~2017
9733249063119466498126312 ~2017
9733354967358400129803912 ~2018
9733535609919467071219912 ~2017
9733616120319467232240712 ~2017
9733769804319467539608712 ~2017
9735410648319470821296712 ~2017
9735462443919470924887912 ~2017
9735734869119471469738312 ~2017
9736668455919473336911912 ~2017
9738134575777905076605712 ~2018
9738917279919477834559912 ~2017
Exponent Prime Factor Dig. Year
9739050695919478101391912 ~2017
9739316184158435897104712 ~2018
9739603391919479206783912 ~2017
9740542721919481085443912 ~2017
9740576836777924614693712 ~2018
9741159097777929272781712 ~2018
9741173527758447041166312 ~2018
9741175519119482351038312 ~2017
9741325158158447950948712 ~2018
9741799160319483598320712 ~2017
9741843380319483686760712 ~2017
9742080374319484160748712 ~2017
9742132237358452793423912 ~2018
9742428667119484857334312 ~2017
9742562161177940497288912 ~2018
9742965397777943723181712 ~2018
9743373043119486746086312 ~2017
9743403977919486807955912 ~2017
9743435747919486871495912 ~2017
9743445387758460672326312 ~2018
9744540919758467245518312 ~2018
9744758957919489517915912 ~2017
9745340468319490680936712 ~2017
9745524797919491049595912 ~2017
9745897669119491795338312 ~2017
Home
5.142.307 digits
e-mail
25-10-26