Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9656276162319312552324712 ~2017
9656508623919313017247912 ~2017
9657238913919314477827912 ~2017
9657291590977258332727312 ~2018
9657360739357944164435912 ~2018
9657870391119315740782312 ~2017
9659816624319319633248712 ~2017
9660232655919320465311912 ~2017
9661202525919322405051912 ~2017
966135662335468...48787914 2025
9661494773919322989547912 ~2017
9661765027119323530054312 ~2017
9662097161919324194323912 ~2017
9662678537919325357075912 ~2017
9663613069119327226138312 ~2017
9665015773119330031546312 ~2017
9665426948319330853896712 ~2017
9665475380319330950760712 ~2017
9665704747119331409494312 ~2017
9665995829919331991659912 ~2017
9666245024319332490048712 ~2017
9667283537919334567075912 ~2017
966745408634273...06144714 2024
9667745899119335491798312 ~2017
9667943192977343545543312 ~2018
Exponent Prime Factor Dig. Year
9668009863119336019726312 ~2017
9668073401919336146803912 ~2017
9668118409119336236818312 ~2017
9668379212319336758424712 ~2017
9668633804319337267608712 ~2017
9669164198319338328396712 ~2017
9669386545119338773090312 ~2017
9669626843919339253687912 ~2017
9670188512319340377024712 ~2017
9670471194158022827164712 ~2018
9670647614319341295228712 ~2017
9671391824319342783648712 ~2017
9671955974319343911948712 ~2017
9672028309119344056618312 ~2017
9672608244158035649464712 ~2018
9672755191119345510382312 ~2017
9672884684319345769368712 ~2017
9673344379119346688758312 ~2017
9674637706777397101653712 ~2018
967516946511040...59319917 2023
9675231584319350463168712 ~2017
9675961699119351923398312 ~2017
9676152291758056913750312 ~2018
9676479439119352958878312 ~2017
9676495391919352990783912 ~2017
Exponent Prime Factor Dig. Year
9676685756319353371512712 ~2017
9676822805919353645611912 ~2017
9677021273919354042547912 ~2017
9677027287119354054574312 ~2017
9677225767119354451534312 ~2017
9677258168319354516336712 ~2017
9677670278319355340556712 ~2017
967840431071335...94876714 2024
9679226030319358452060712 ~2017
9679382755119358765510312 ~2017
9680829440319361658880712 ~2017
9681149969919362299939912 ~2017
9681820807758090924846312 ~2018
9681924764319363849528712 ~2017
9682026635919364053271912 ~2017
9682745210319365490420712 ~2017
9682999045119365998090312 ~2017
9684083036319368166072712 ~2017
9684758861919369517723912 ~2017
968485739938445...52189714 2025
9685738337358114430023912 ~2018
9685887128319371774256712 ~2017
9686060497758116362986312 ~2018
9686302717119372605434312 ~2017
9686907956319373815912712 ~2017
Exponent Prime Factor Dig. Year
9687678484158126070904712 ~2018
9688410908319376821816712 ~2017
9689009191119378018382312 ~2017
9689066311358134397867912 ~2018
9690537563919381075127912 ~2017
9690587447919381174895912 ~2017
9691173200319382346400712 ~2017
9691597825119383195650312 ~2017
9691966111758151796670312 ~2018
9692425537758154553226312 ~2018
9692529488319385058976712 ~2017
969259682412384...18728714 2024
9692732600319385465200712 ~2017
9693194255919386388511912 ~2017
9695417159919390834319912 ~2017
9696563975919393127951912 ~2017
9696973824158181842944712 ~2018
9697821701919395643403912 ~2017
9698281253919396562507912 ~2017
9698308520319396617040712 ~2017
9698572073919397144147912 ~2017
9698938805919397877611912 ~2017
9699931021119399862042312 ~2017
9699972014319399944028712 ~2017
9700114055919400228111912 ~2017
Home
5.142.307 digits
e-mail
25-10-26