Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9550867019919101734039912 ~2017
9551593345119103186690312 ~2017
9552114635919104229271912 ~2017
9553466447919106932895912 ~2017
9553552897119107105794312 ~2017
9553605517119107211034312 ~2017
9554326394319108652788712 ~2017
9554507227757327043366312 ~2018
9554766650319109533300712 ~2017
9555566251119111132502312 ~2017
9556412405919112824811912 ~2017
9556429363357338576179912 ~2018
9557785354157346712124712 ~2018
9557987131119115974262312 ~2017
9558262550319116525100712 ~2017
9558296273357349777639912 ~2018
9558690941919117381883912 ~2017
9561275201919122550403912 ~2017
9562817688157376906128712 ~2018
9563061331119126122662312 ~2017
9563537383119127074766312 ~2017
9563788583919127577167912 ~2017
9564034171119128068342312 ~2017
9564519254319129038508712 ~2017
9565223387919130446775912 ~2017
Exponent Prime Factor Dig. Year
9566579474319133158948712 ~2017
9566707099119133414198312 ~2017
9567049822176536398576912 ~2018
9567846188319135692376712 ~2017
9568185221919136370443912 ~2017
9568475765919136951531912 ~2017
9568799309919137598619912 ~2017
9569543425176556347400912 ~2018
9569693845119139387690312 ~2017
9570010549357420063295912 ~2018
9570424513776563396109712 ~2018
9571302968319142605936712 ~2017
9571920137976575361103312 ~2018
9572764933119145529866312 ~2017
9574005068319148010136712 ~2017
9574244045919148488091912 ~2017
9575132083119150264166312 ~2017
9575465237919150930475912 ~2017
9576139733919152279467912 ~2017
9576180560319152361120712 ~2017
9576478342776611826741712 ~2018
9576538573119153077146312 ~2017
9576876242319153752484712 ~2017
9577498486176619987888912 ~2018
9578277485357469664911912 ~2018
Exponent Prime Factor Dig. Year
9578654525919157309051912 ~2017
9578806969119157613938312 ~2017
9578843527776630748221712 ~2018
9578972299776631778397712 ~2018
9579560059119159120118312 ~2017
9580078897119160157794312 ~2017
9580402887757482417326312 ~2018
9580509377357483056263912 ~2018
958075728791833...49040715 2023
9581240646157487443876712 ~2018
9581529325119163058650312 ~2017
9582593369919165186739912 ~2017
9582780871119165561742312 ~2017
9582799910319165599820712 ~2017
9582919354157497516124712 ~2018
9582941495919165882991912 ~2017
9583236937119166473874312 ~2017
9583286690319166573380712 ~2017
9583554086319167108172712 ~2017
9584681030319169362060712 ~2017
9584696365757508178194312 ~2018
9584826851357508961107912 ~2018
9585698039919171396079912 ~2017
9586163531919172327063912 ~2017
9586627925976693023407312 ~2018
Exponent Prime Factor Dig. Year
9586818263919173636527912 ~2017
9587021119757522126718312 ~2018
9587154211119174308422312 ~2017
9587177884157523067304712 ~2018
9587771863776702174909712 ~2018
9587825791119175651582312 ~2017
9588172919919176345839912 ~2017
9588373831176706990648912 ~2018
9588919747119177839494312 ~2017
9588936319757533617918312 ~2018
9589268359119178536718312 ~2017
9590656055919181312111912 ~2017
9590720360319181440720712 ~2017
9591959337757551756026312 ~2018
9592462027119184924054312 ~2017
9592725779919185451559912 ~2017
9592838405919185676811912 ~2017
9592948529919185897059912 ~2017
9593510333919187020667912 ~2017
9594628689757567772138312 ~2018
9594662786319189325572712 ~2017
9595194277119190388554312 ~2017
9595324909757571949458312 ~2018
9595758061119191516122312 ~2017
9596343037119192686074312 ~2017
Home
5.037.460 digits
e-mail
25-09-07