Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9512588300319025176600712 ~2017
9513140404176105123232912 ~2018
9513476918319026953836712 ~2017
9513554713119027109426312 ~2017
9513799844319027599688712 ~2017
9515671675119031343350312 ~2017
9515851813119031703626312 ~2017
9515941889919031883779912 ~2017
951637331634111...72641714 2025
9516542828319033085656712 ~2017
9517026164319034052328712 ~2017
9517979159919035958319912 ~2017
9518095873119036191746312 ~2017
9518243589757109461538312 ~2018
9518849909919037699819912 ~2017
9519393403757116360422312 ~2018
9519807625119039615250312 ~2017
9520241911119040483822312 ~2017
9520357418319040714836712 ~2017
9521270327976170162623312 ~2018
9521462693919042925387912 ~2017
9521668178319043336356712 ~2017
9522272635357133635811912 ~2018
9522434027357134604163912 ~2018
9522490268319044980536712 ~2017
Exponent Prime Factor Dig. Year
9522943966157137663796712 ~2018
9523374804157140248824712 ~2018
9523408094319046816188712 ~2017
952431941998305...34152914 2025
9524518172319049036344712 ~2017
9524582537919049165075912 ~2017
952464506595429...87563114 2023
9524790955119049581910312 ~2017
9524897095119049794190312 ~2017
9524901793119049803586312 ~2017
9525326015919050652031912 ~2017
9525802406319051604812712 ~2017
9526015168157156091008712 ~2018
9526211917176209695336912 ~2018
952628277471846...17368715 2023
9526392106176211136848912 ~2018
9526684709919053369419912 ~2017
9527242226319054484452712 ~2017
9527570669919055141339912 ~2017
9528784589919057569179912 ~2017
9529050211757174301270312 ~2018
9530248855176241990840912 ~2018
9530263073919060526147912 ~2017
9530593871919061187743912 ~2017
9530937221919061874443912 ~2017
Exponent Prime Factor Dig. Year
9531323027919062646055912 ~2017
9531839285919063678571912 ~2017
9532016507919064033015912 ~2017
953213557491317...64511915 2024
9532643318319065286636712 ~2017
9533125922319066251844712 ~2017
9534527521119069055042312 ~2017
9535334363919070668727912 ~2017
9535376315919070752631912 ~2017
9535613050157213678300712 ~2018
9536081732319072163464712 ~2017
9536775583119073551166312 ~2017
9537395306319074790612712 ~2017
9537509948319075019896712 ~2017
9538143685119076287370312 ~2017
9538388648319076777296712 ~2017
9539043253119078086506312 ~2017
9539801704176318413632912 ~2018
9539874718176318997744912 ~2018
9540139934319080279868712 ~2017
9540279584319080559168712 ~2017
954093060291908...20580114 2024
9541069801119082139602312 ~2017
9541182133119082364266312 ~2017
9541735813757250414882312 ~2018
Exponent Prime Factor Dig. Year
9542278445919084556891912 ~2017
9543446605119086893210312 ~2017
9545048680157270292080712 ~2018
9545705891919091411783912 ~2017
9545768700157274612200712 ~2018
9546305774319092611548712 ~2017
9546778063119093556126312 ~2017
9546955178976375641431312 ~2018
9546996534157281979204712 ~2018
9547082311119094164622312 ~2017
9547317392319094634784712 ~2017
9547763902157286583412712 ~2018
9548303696319096607392712 ~2017
9548497592319096995184712 ~2017
9548901510157293409060712 ~2018
9548967895119097935790312 ~2017
9549006137919098012275912 ~2017
9549271391357295628347912 ~2018
9549355226319098710452712 ~2017
9549996256776399970053712 ~2018
9550409062157302454372712 ~2018
9550441196319100882392712 ~2017
9550442453919100884907912 ~2017
9550802077119101604154312 ~2017
9550802552319101605104712 ~2017
Home
5.037.460 digits
e-mail
25-09-07