Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16073927264332147854528712 ~2019
16074457520332148915040712 ~2019
16074511304332149022608712 ~2019
16075780877932151561755912 ~2019
16076251505932152503011912 ~2019
16076290430332152580860712 ~2019
16076670085132153340170312 ~2019
16076811473932153622947912 ~2019
16077040267132154080534312 ~2019
16077155915932154311831912 ~2019
16078224397132156448794312 ~2019
16079072549932158145099912 ~2019
16079534161132159068322312 ~2019
16080600949132161201898312 ~2019
16082305460332164610920712 ~2019
16083978925132167957850312 ~2019
1608684133371103...54918315 2023
16086933584332173867168712 ~2019
16087958660332175917320712 ~2019
16090042793932180085587912 ~2019
1609138349691750...44627315 2023
16092351179932184702359912 ~2019
16092907303132185814606312 ~2019
16093688051932187376103912 ~2019
16093964609932187929219912 ~2019
Exponent Prime Factor Dig. Year
16094659334332189318668712 ~2019
1609625526834249...90831314 2024
16096760755132193521510312 ~2019
1609738569475698...35923914 2024
16097486687932194973375912 ~2019
16102182247132204364494312 ~2019
16103217079132206434158312 ~2019
16103300369932206600739912 ~2019
16103449051132206898102312 ~2019
16104493735132208987470312 ~2019
16104512624332209025248712 ~2019
16104918829132209837658312 ~2019
16105458977932210917955912 ~2019
16106502593932213005187912 ~2019
16108825243132217650486312 ~2019
16110368711932220737423912 ~2019
16110473665132220947330312 ~2019
16116024188332232048376712 ~2019
16117483148332234966296712 ~2019
16121512919932243025839912 ~2019
16122767876332245535752712 ~2019
16124306480332248612960712 ~2019
16126897649932253795299912 ~2019
16127051876332254103752712 ~2019
16127809604332255619208712 ~2019
Exponent Prime Factor Dig. Year
16128975553132257951106312 ~2019
16130272171132260544342312 ~2019
16130957657932261915315912 ~2019
16132213988332264427976712 ~2019
16132705093132265410186312 ~2019
16132779374332265558748712 ~2019
16134403717132268807434312 ~2019
16136004305932272008611912 ~2019
16136175637132272351274312 ~2019
16136990696332273981392712 ~2019
16137028343932274056687912 ~2019
16137558494332275116988712 ~2019
16137862592332275725184712 ~2019
16137982811932275965623912 ~2019
16138710584332277421168712 ~2019
16139276456332278552912712 ~2019
16139465773132278931546312 ~2019
16140078419932280156839912 ~2019
16140350054332280700108712 ~2019
1614100992673002...46366314 2024
16141722311932283444623912 ~2019
16142500655932285001311912 ~2019
16142600738332285201476712 ~2019
16145130245932290260491912 ~2019
16145285336332290570672712 ~2019
Exponent Prime Factor Dig. Year
16145520889132291041778312 ~2019
16146972896332293945792712 ~2019
16147795388332295590776712 ~2019
16149264014332298528028712 ~2019
16149804065932299608131912 ~2019
16149846955132299693910312 ~2019
16152518299132305036598312 ~2019
16153678331932307356663912 ~2019
16153972279132307944558312 ~2019
16154075813932308151627912 ~2019
16154689055932309378111912 ~2019
16156009135132312018270312 ~2019
16156331381932312662763912 ~2019
16157057083132314114166312 ~2019
16158217019932316434039912 ~2019
16159376191132318752382312 ~2019
16159487858332318975716712 ~2019
16161807476332323614952712 ~2019
16163036827132326073654312 ~2019
16164845132332329690264712 ~2019
16164997315132329994630312 ~2019
16165341356332330682712712 ~2019
16166124383932332248767912 ~2019
16166715080332333430160712 ~2019
16167013321132334026642312 ~2019
Home
4.888.230 digits
e-mail
25-06-29