Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16269576281932539152563912 ~2019
16273790813932547581627912 ~2019
16274879671132549759342312 ~2019
16275080921932550161843912 ~2019
16275594055132551188110312 ~2019
16278655283932557310567912 ~2019
16280524832332561049664712 ~2019
16280966323132561932646312 ~2019
16281046039132562092078312 ~2019
16282024067932564048135912 ~2019
16282568917132565137834312 ~2019
16283575069132567150138312 ~2019
16284115931932568231863912 ~2019
16284602279932569204559912 ~2019
16285069775932570139551912 ~2019
1628607966115237...60298316 2025
16286965229932573930459912 ~2019
16287048953932574097907912 ~2019
16287381062332574762124712 ~2019
16291175996332582351992712 ~2019
16292250266332584500532712 ~2019
16293419264332586838528712 ~2019
16293737036332587474072712 ~2019
16294141541932588283083912 ~2019
16294953257932589906515912 ~2019
Exponent Prime Factor Dig. Year
16296687187132593374374312 ~2019
16297620121132595240242312 ~2019
16298974265932597948531912 ~2019
16299442766332598885532712 ~2019
16300532317132601064634312 ~2019
16301372953132602745906312 ~2019
16301486693932602973387912 ~2019
16304836244332609672488712 ~2019
16305171152332610342304712 ~2019
16306026223132612052446312 ~2019
16307519036332615038072712 ~2019
16307673403132615346806312 ~2019
16307975731132615951462312 ~2019
16308254540332616509080712 ~2019
16308421855132616843710312 ~2019
16308423865132616847730312 ~2019
16308689624332617379248712 ~2019
16310008729132620017458312 ~2019
16311443345932622886691912 ~2019
16312077073132624154146312 ~2019
1631274446591435...12999314 2024
16313854985932627709971912 ~2019
16314102848332628205696712 ~2019
16314829982332629659964712 ~2019
16315284769132630569538312 ~2019
Exponent Prime Factor Dig. Year
16317774926332635549852712 ~2019
16318123283932636246567912 ~2019
1631932871812059...42242315 2025
16319529332332639058664712 ~2019
16319940227932639880455912 ~2019
16320404132332640808264712 ~2019
16320474955132640949910312 ~2019
16322020429132644040858312 ~2019
16322232209932644464419912 ~2019
16324055971132648111942312 ~2019
16324830703132649661406312 ~2019
16325123659132650247318312 ~2019
16327245644332654491288712 ~2019
16330463978332660927956712 ~2019
16330966058332661932116712 ~2019
16331433671932662867343912 ~2019
16331616355132663232710312 ~2019
16332266761132664533522312 ~2019
1633292610317611...64044714 2024
16334694581932669389163912 ~2019
16337437745932674875491912 ~2019
16338397127932676794255912 ~2019
1633954264431607...61991315 2025
16341735146332683470292712 ~2019
16342173455932684346911912 ~2019
Exponent Prime Factor Dig. Year
16342310489932684620979912 ~2019
16346850577132693701154312 ~2019
16346963795932693927591912 ~2019
16347802891132695605782312 ~2019
16348052461132696104922312 ~2019
16348177531132696355062312 ~2019
16348596131932697192263912 ~2019
16348849106332697698212712 ~2019
16350499453132700998906312 ~2019
16350553945132701107890312 ~2019
16353246821932706493643912 ~2019
16353447197932706894395912 ~2019
16356238903132712477806312 ~2019
1635659173692747...11799314 2024
16356834713932713669427912 ~2019
16359063649132718127298312 ~2019
16359115627132718231254312 ~2019
16361406128332722812256712 ~2019
16361733179932723466359912 ~2019
16362095755132724191510312 ~2019
16362994517932725989035912 ~2019
16364073703132728147406312 ~2019
16365359747932730719495912 ~2019
16365458924332730917848712 ~2019
16368305495932736610991912 ~2019
Home
4.873.271 digits
e-mail
25-06-22