Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16159487858332318975716712 ~2019
16161807476332323614952712 ~2019
16163036827132326073654312 ~2019
16164845132332329690264712 ~2019
16164997315132329994630312 ~2019
16165341356332330682712712 ~2019
16166124383932332248767912 ~2019
16166715080332333430160712 ~2019
16167013321132334026642312 ~2019
1616774594394025...00311115 2023
16168140449932336280899912 ~2019
16168695169132337390338312 ~2019
16170109207132340218414312 ~2019
16171842269932343684539912 ~2019
16172596601932345193203912 ~2019
16172875637932345751275912 ~2019
16173045866332346091732712 ~2019
16173671480332347342960712 ~2019
16173750797932347501595912 ~2019
16175044754332350089508712 ~2019
16176443096332352886192712 ~2019
16176874211932353748423912 ~2019
16179996956332359993912712 ~2019
16180812689932361625379912 ~2019
16181069612332362139224712 ~2019
Exponent Prime Factor Dig. Year
16182111605932364223211912 ~2019
16182282887932364565775912 ~2019
16184388194332368776388712 ~2019
16186442120332372884240712 ~2019
16187005328332374010656712 ~2019
16189177549132378355098312 ~2019
16189180909132378361818312 ~2019
16191139379932382278759912 ~2019
16191228731932382457463912 ~2019
16191810515932383621031912 ~2019
16196032676332392065352712 ~2019
16196163571132392327142312 ~2019
16196321653132392643306312 ~2019
16196551063132393102126312 ~2019
16196619817132393239634312 ~2019
16199147807932398295615912 ~2019
16199370002332398740004712 ~2019
16201581131932403162263912 ~2019
16201882285132403764570312 ~2019
16202147161132404294322312 ~2019
16202998133932405996267912 ~2019
16204065007132408130014312 ~2019
16204668067132409336134312 ~2019
1620564047872852...24251314 2024
16205737934332411475868712 ~2019
Exponent Prime Factor Dig. Year
16206433523932412867047912 ~2019
16210828358332421656716712 ~2019
16212796465132425592930312 ~2019
16212898693132425797386312 ~2019
1621368202694539...67532114 2024
16218281267932436562535912 ~2019
16219073138332438146276712 ~2019
16220922031132441844062312 ~2019
16221241706332442483412712 ~2019
16222965589132445931178312 ~2019
16223318456332446636912712 ~2019
16223490131932446980263912 ~2019
16224712703932449425407912 ~2019
16225903556332451807112712 ~2019
16228804193932457608387912 ~2019
16230963505132461927010312 ~2019
16233117176332466234352712 ~2019
16239791861932479583723912 ~2019
16240081232332480162464712 ~2019
16242069919132484139838312 ~2019
16242168929932484337859912 ~2019
16243465153132486930306312 ~2019
16244170979932488341959912 ~2019
16244846045932489692091912 ~2019
16245334880332490669760712 ~2019
Exponent Prime Factor Dig. Year
16246162712332492325424712 ~2019
16246775131132493550262312 ~2019
16246984907932493969815912 ~2019
16247870207932495740415912 ~2019
16248392942332496785884712 ~2019
16248447626332496895252712 ~2019
1624906251311286...10375315 2025
16250207534332500415068712 ~2019
16251366703132502733406312 ~2019
16252021871932504043743912 ~2019
16252300703932504601407912 ~2019
16253643083932507286167912 ~2019
16254934513132509869026312 ~2019
16255637267932511274535912 ~2019
16257495073132514990146312 ~2019
16262004823132524009646312 ~2019
16262198765932524397531912 ~2019
16262720792332525441584712 ~2019
16263375659932526751319912 ~2019
16265032651132530065302312 ~2019
16265107178332530214356712 ~2019
16265329946332530659892712 ~2019
16266310319932532620639912 ~2019
16266805370332533610740712 ~2019
16267231955932534463911912 ~2019
Home
4.873.271 digits
e-mail
25-06-22