Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9436089349175488714792912 ~2018
9436242482318872484964712 ~2017
9436608769118873217538312 ~2017
9436916444318873832888712 ~2017
9437683454318875366908712 ~2017
9437964917918875929835912 ~2017
9438356972318876713944712 ~2017
9438404510318876809020712 ~2017
9440180893756641085362312 ~2018
9440399191118880798382312 ~2017
944063882276740...19407914 2025
9441475166318882950332712 ~2017
9441586424318883172848712 ~2017
9441698225918883396451912 ~2017
9441907879118883815758312 ~2017
9443132027918886264055912 ~2017
9443189273918886378547912 ~2017
9443468983118886937966312 ~2017
9444206617118888413234312 ~2017
9444433921118888867842312 ~2017
9444536203118889072406312 ~2017
9445134943118890269886312 ~2017
9445326659918890653319912 ~2017
944561424711379...80076714 2024
9446205413918892410827912 ~2017
Exponent Prime Factor Dig. Year
9446258293756677549762312 ~2018
9446336653775570693229712 ~2018
9446604326318893208652712 ~2017
9447653618318895307236712 ~2017
9447943999118895887998312 ~2017
9447981320318895962640712 ~2017
9447997952318895995904712 ~2017
9448620662318897241324712 ~2017
9448804757918897609515912 ~2017
9449242319918898484639912 ~2017
9449446340318898892680712 ~2017
9450062892156700377352712 ~2018
9450390005918900780011912 ~2017
9450624772175604998176912 ~2018
9450998966318901997932712 ~2017
9451012736318902025472712 ~2017
9451098158318902196316712 ~2017
9451111484318902222968712 ~2017
9451219109918902438219912 ~2017
9451716103118903432206312 ~2017
9452154665918904309331912 ~2017
9452227298318904454596712 ~2017
9452728069756716368418312 ~2018
9452737421918905474843912 ~2017
9453111925118906223850312 ~2017
Exponent Prime Factor Dig. Year
9454157521118908315042312 ~2017
9454328513918908657027912 ~2017
9454362203918908724407912 ~2017
9454424471918908848943912 ~2017
9454807680156728846080712 ~2018
9455736331118911472662312 ~2017
9456368191118912736382312 ~2017
9456878453918913756907912 ~2017
9458124422318916248844712 ~2017
9458545988318917091976712 ~2017
9458750140175670001120912 ~2018
9459369899918918739799912 ~2017
9459678981756758073890312 ~2018
9459850783118919701566312 ~2017
9461127665918922255331912 ~2017
9462380305118924760610312 ~2017
9462396829118924793658312 ~2017
9463808672318927617344712 ~2017
9464417909918928835819912 ~2017
9464441167756786647006312 ~2018
9464676764318929353528712 ~2017
9465156620318930313240712 ~2017
9465301187918930602375912 ~2017
9465541789118931083578312 ~2017
9465824021918931648043912 ~2017
Exponent Prime Factor Dig. Year
9466307624318932615248712 ~2017
9466333832318932667664712 ~2017
9466739402318933478804712 ~2017
9467283161918934566323912 ~2017
9467366789918934733579912 ~2017
9468511309118937022618312 ~2017
9468616565918937233131912 ~2017
946903337811075...17521715 2025
9469952227118939904454312 ~2017
9471102086318942204172712 ~2017
9471629075918943258151912 ~2017
9471778393118943556786312 ~2017
9473969225918947938451912 ~2017
9474485569756846913418312 ~2018
9474651967118949303934312 ~2017
9474830949756848985698312 ~2018
9474930289118949860578312 ~2017
9475570117118951140234312 ~2017
9476025251918952050503912 ~2017
9476515410156859092460712 ~2018
9476779942175814239536912 ~2018
9477203291918954406583912 ~2017
9477602623175820820984912 ~2018
9477951811118955903622312 ~2017
9478344903756870069422312 ~2018
Home
4.873.271 digits
e-mail
25-06-22