Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15598878758331197757516712 ~2018
15598909943931197819887912 ~2018
15598995371931197990743912 ~2018
15600612761931201225523912 ~2018
15601444766331202889532712 ~2018
15601825118331203650236712 ~2018
15603731765931207463531912 ~2018
15603873776331207747552712 ~2018
15605233310331210466620712 ~2018
15606032189931212064379912 ~2018
15607584926331215169852712 ~2018
15608253589131216507178312 ~2018
15608256512331216513024712 ~2018
15608690411931217380823912 ~2018
15608911681131217823362312 ~2018
15610219967931220439935912 ~2018
15610600607931221201215912 ~2018
15611568485931223136971912 ~2018
15611629808331223259616712 ~2018
15612368323131224736646312 ~2018
15612903349131225806698312 ~2018
1561489384792111...82360915 2025
15614936527131229873054312 ~2018
15617207657931234415315912 ~2018
15617505371931235010743912 ~2018
Exponent Prime Factor Dig. Year
15617519167131235038334312 ~2018
15617857877931235715755912 ~2018
15618001382331236002764712 ~2018
15618221312331236442624712 ~2018
15618374729931236749459912 ~2018
15618819055131237638110312 ~2018
1562128669935623...11748114 2024
15621652922331243305844712 ~2018
15623071757931246143515912 ~2018
15623164091931246328183912 ~2018
1562389541036030...28375914 2023
15624402557931248805115912 ~2018
15624416876331248833752712 ~2018
15624796517931249593035912 ~2018
1562899109294848...70175915 2023
15629013607131258027214312 ~2018
1562956734112216...89679915 2023
15630536486331261072972712 ~2018
15631035554331262071108712 ~2018
15632730401931265460803912 ~2018
15632912233131265824466312 ~2018
15635163041931270326083912 ~2018
15635643181131271286362312 ~2018
15637918328331275836656712 ~2018
15637926295131275852590312 ~2018
Exponent Prime Factor Dig. Year
15638357393931276714787912 ~2018
1563973777914535...55939114 2023
15640227253131280454506312 ~2018
15640515017931281030035912 ~2018
15642325663131284651326312 ~2018
15644123149131288246298312 ~2018
15644332943931288665887912 ~2018
15645196357131290392714312 ~2018
15645661513131291323026312 ~2018
15645887225931291774451912 ~2018
15647052847131294105694312 ~2018
15647595703131295191406312 ~2018
15648808961931297617923912 ~2018
15652694401131305388802312 ~2018
15653139002331306278004712 ~2018
15654191069931308382139912 ~2018
15657140309931314280619912 ~2018
1565809654211503...68041714 2024
1566207054293132...08580114 2024
15663933613131327867226312 ~2018
15664105171131328210342312 ~2018
15666413089131332826178312 ~2018
15666882998331333765996712 ~2018
15668287406331336574812712 ~2018
15668334692331336669384712 ~2018
Exponent Prime Factor Dig. Year
15669182828331338365656712 ~2018
15672169057131344338114312 ~2018
15673714661931347429323912 ~2018
15674304223131348608446312 ~2018
15680816737131361633474312 ~2018
15682233181131364466362312 ~2018
15685391180331370782360712 ~2018
15687343661931374687323912 ~2018
15687836378331375672756712 ~2018
15687931111131375862222312 ~2018
15688654969131377309938312 ~2018
15690611285931381222571912 ~2018
15690725975931381451951912 ~2018
15690836540331381673080712 ~2018
15690898805931381797611912 ~2018
15691462610331382925220712 ~2018
15691488019131382976038312 ~2018
15692198504331384397008712 ~2018
15692293100331384586200712 ~2018
15693183863931386367727912 ~2018
1569394155193264...42795314 2024
15696198517131392397034312 ~2018
15697144199931394288399912 ~2018
15697799831931395599663912 ~2018
15699443641131398887282312 ~2018
Home
4.724.182 digits
e-mail
25-04-13