Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
411104079118222081582311 ~2014
411137191318222743826311 ~2014
4111489874932891918999312 ~2015
411230604838224612096711 ~2014
411244026598224880531911 ~2014
4112477701324674866207912 ~2015
411250235038225004700711 ~2014
411268352038225367040711 ~2014
4113167693932905341551312 ~2015
411332186038226643720711 ~2014
411335951038226719020711 ~2014
4113640006132909120048912 ~2015
4113701140732909609125712 ~2015
411398252638227965052711 ~2014
411408871438228177428711 ~2014
411457442038229148840711 ~2014
411484176598229683531911 ~2014
4115050613932920404911312 ~2015
411581419918231628398311 ~2014
411597780598231955611911 ~2014
411609411838232188236711 ~2014
411629719198232594383911 ~2014
411630414598232608291911 ~2014
411637442398232748847911 ~2014
411640375438232807508711 ~2014
Exponent Prime Factor Dig. Year
411663279718233265594311 ~2014
411677196238233543924711 ~2014
411687811918233756238311 ~2014
411693023891375...99792714 2023
411706948798234138975911 ~2014
411726098518234521970311 ~2014
411765354238235307084711 ~2014
411765589198235311783911 ~2014
4117747693732941981549712 ~2015
411785898718235717974311 ~2014
411866835118237336702311 ~2014
411894221398237884427911 ~2014
4119057753724714346522312 ~2015
4119142786124714856716712 ~2015
411915313198238306263911 ~2014
411957701398239154027911 ~2014
411980508718239610174311 ~2014
411982021318239640426311 ~2014
4120003159724720018958312 ~2015
412016642998240332859911 ~2014
412062361198241247223911 ~2014
412071326398241426527911 ~2014
4120862515324725175091912 ~2015
4120974257324725845543912 ~2015
4121039137132968313096912 ~2015
Exponent Prime Factor Dig. Year
412115671798242313435911 ~2014
412121162998242423259911 ~2014
412187282518243745650311 ~2014
412212926638244258532711 ~2014
412215892438244317848711 ~2014
412231971598244639431911 ~2014
412237711198244754223911 ~2014
412252875118245057502311 ~2014
412276539838245530796711 ~2014
412280190718245603814311 ~2014
4122931063757721034891912 ~2016
412298534038245970680711 ~2014
412311269038246225380711 ~2014
412376927638247538552711 ~2014
4124051045324744306271912 ~2015
412405742998248114859911 ~2014
412410608518248212170311 ~2014
412440364798248807295911 ~2014
412456384438249127688711 ~2014
4124867788124749206728712 ~2015
412494863038249897260711 ~2014
412502943838250058876711 ~2014
412503933238250078664711 ~2014
4125112147724750672886312 ~2015
4125783875974264109766312 ~2016
Exponent Prime Factor Dig. Year
412592014918251840298311 ~2014
412616458918252329178311 ~2014
412616875318252337506311 ~2014
412633433398252668667911 ~2014
412664826238253296524711 ~2014
412670079598253401591911 ~2014
412716102838254322056711 ~2014
4127286654124763719924712 ~2015
412777424038255548480711 ~2014
412795665718255913314311 ~2014
412807432918256148658311 ~2014
412818057118256361142311 ~2014
412832696038256653920711 ~2014
412837186318256743726311 ~2014
412843506238256870124711 ~2014
4128633568124771801408712 ~2015
4128760543324772563259912 ~2015
4128800503724772803022312 ~2015
412906811638258136232711 ~2014
4129266151133034129208912 ~2015
412967475718259349514311 ~2014
4129755455324778532731912 ~2015
412994883838259897676711 ~2014
412996962118259939242311 ~2014
4130652248933045217991312 ~2015
Home
5.037.460 digits
e-mail
25-09-07