Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2898291778723186334229712 ~2014
2898688867723189510941712 ~2014
289885360795797707215911 ~2013
289887902635797758052711 ~2013
2898980568728989805687112 ~2014
289909932115798198642311 ~2013
2899137736963781030211912 ~2015
289919650315798393006311 ~2013
289924710235798494204711 ~2013
2899261169317395567015912 ~2014
289929817795798596355911 ~2013
289940130115798802602311 ~2013
289958247715799164954311 ~2013
289958665915799173318311 ~2013
289959092635799181852711 ~2013
289961879395799237587911 ~2013
289965650995799313019911 ~2013
2899769100728997691007112 ~2014
2899920369717399522218312 ~2014
2900168235717401009414312 ~2014
290022942595800458851911 ~2013
2900327731317401966387912 ~2014
2900496777717402980666312 ~2014
290055125515801102510311 ~2013
290061417715801228354311 ~2013
Exponent Prime Factor Dig. Year
290073644995801472899911 ~2013
2900913919123207311352912 ~2014
290100520915802010418311 ~2013
290101781995802035639911 ~2013
290111840995802236819911 ~2013
2901133540329011335403112 ~2014
290118954835802379096711 ~2013
2901255827923210046623312 ~2014
290138453635802769072711 ~2013
2901676101717410056610312 ~2014
290181673195803633463911 ~2013
290199588115803991762311 ~2013
290202903715804058074311 ~2013
2902301142117413806852712 ~2014
290251733995805034679911 ~2013
290258888635805177772711 ~2013
2902610021923220880175312 ~2014
2902639616923221116935312 ~2014
2902646373769663512968912 ~2015
2902664415129026644151112 ~2014
290278748995805574979911 ~2013
290288192995805763859911 ~2013
2902992364117417954184712 ~2014
290314845715806296914311 ~2013
290322740035806454800711 ~2013
Exponent Prime Factor Dig. Year
290323160395806463207911 ~2013
290325652795806513055911 ~2013
290328687835806573756711 ~2013
290352971995807059439911 ~2013
290357269315807145386311 ~2013
290367603235807352064711 ~2013
290372320195807446403911 ~2013
290381370715807627414311 ~2013
290389168315807783366311 ~2013
290392873795807857475911 ~2013
2904156120746466497931312 ~2015
290437747195808754943911 ~2013
290452528435809050568711 ~2013
290477551795809551035911 ~2013
290502275515810045510311 ~2013
2905175407152293157327912 ~2015
290524289035810485780711 ~2013
2905259319717431555918312 ~2014
2905357813123242862504912 ~2014
2905386634117432319804712 ~2014
2905422237129054222371112 ~2014
290545368115810907362311 ~2013
290547923035810958460711 ~2013
290553457435811069148711 ~2013
2905718237340680055322312 ~2015
Exponent Prime Factor Dig. Year
290573607235811472144711 ~2013
2905749969717434499818312 ~2014
2905841179929058411799112 ~2014
2906104477317436626863912 ~2014
290614743715812294874311 ~2013
2906165064769747961552912 ~2015
290624959915812499198311 ~2013
290643771835812875436711 ~2013
2906704825123253638600912 ~2014
290674077235813481544711 ~2013
290690383315813807666311 ~2013
290695698715813913974311 ~2013
2907276545923258212367312 ~2014
290742800995814856019911 ~2013
290744722915814894458311 ~2013
2907458444923259667559312 ~2014
290751733315815034666311 ~2013
290752586035815051720711 ~2013
290757925795815158515911 ~2013
290762958235815259164711 ~2013
2907650615317445903691912 ~2014
290787193915815743878311 ~2013
2907978436117447870616712 ~2014
290821046995816420939911 ~2013
290850558595817011171911 ~2013
Home
5.142.307 digits
e-mail
25-10-26