Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15693183863931386367727912 ~2018
1569394155193264...42795314 2024
15696198517131392397034312 ~2018
15697144199931394288399912 ~2018
15697799831931395599663912 ~2018
15699443641131398887282312 ~2018
15699753875931399507751912 ~2018
15700840945131401681890312 ~2018
15703383863931406767727912 ~2018
15704265763131408531526312 ~2018
15705038357931410076715912 ~2018
15705496105131410992210312 ~2018
15705593651931411187303912 ~2018
15707355668331414711336712 ~2018
15709035487131418070974312 ~2018
15710740145931421480291912 ~2018
15711069739131422139478312 ~2018
15712077320331424154640712 ~2018
15712783429131425566858312 ~2018
1571545965595688...95435914 2024
15715765238331431530476712 ~2018
15716061547131432123094312 ~2018
15716303507931432607015912 ~2018
1571673417978172...73444114 2023
15717002708331434005416712 ~2018
Exponent Prime Factor Dig. Year
15718476797931436953595912 ~2018
15718929737931437859475912 ~2018
15720048265131440096530312 ~2018
15721201298331442402596712 ~2018
15722591453931445182907912 ~2018
15723205955931446411911912 ~2018
15723515423931447030847912 ~2018
15723670561131447341122312 ~2018
15724317866331448635732712 ~2018
15725036101131450072202312 ~2018
15725046968331450093936712 ~2018
15726526409931453052819912 ~2018
15726682783131453365566312 ~2018
15727671065931455342131912 ~2018
1572780116235441...02155914 2024
15730128188331460256376712 ~2018
15730376861931460753723912 ~2018
15730577495931461154991912 ~2018
15731613398331463226796712 ~2018
15732499136331464998272712 ~2018
15734277527931468555055912 ~2018
15735025091931470050183912 ~2018
15735369191931470738383912 ~2018
15735879535131471759070312 ~2018
15736116380331472232760712 ~2018
Exponent Prime Factor Dig. Year
15736733131131473466262312 ~2018
15737086094331474172188712 ~2018
15737364197931474728395912 ~2018
15741930584331483861168712 ~2018
15742524122331485048244712 ~2018
15743347643931486695287912 ~2018
15743722865931487445731912 ~2018
15745300418331490600836712 ~2018
15745465226331490930452712 ~2018
15747314209131494628418312 ~2018
1575186085811209...39020915 2025
15752900941131505801882312 ~2018
15753680285931507360571912 ~2018
15754839869931509679739912 ~2018
15755483150331510966300712 ~2018
15755812195131511624390312 ~2018
1575632884092993...79771114 2024
15757822795131515645590312 ~2018
15758397163131516794326312 ~2018
15760507835931521015671912 ~2018
15761733349131523466698312 ~2018
15762119897931524239795912 ~2018
15762233599131524467198312 ~2018
15763303280331526606560712 ~2018
15763576451931527152903912 ~2018
Exponent Prime Factor Dig. Year
15768472892331536945784712 ~2018
15770104604331540209208712 ~2018
15771283019931542566039912 ~2018
15775506818331551013636712 ~2018
15776663393931553326787912 ~2018
15778856600331557713200712 ~2018
1577896420913418...54360716 2023
15782625887931565251775912 ~2018
15783004163931566008327912 ~2018
15783224041131566448082312 ~2018
15783839600331567679200712 ~2018
15784479761931568959523912 ~2018
15786631957131573263914312 ~2018
15787142555931574285111912 ~2018
15789286813131578573626312 ~2018
15789664616331579329232712 ~2018
15791167505931582335011912 ~2018
15791724991131583449982312 ~2018
15791797175931583594351912 ~2018
15799799396331599598792712 ~2018
15802638560331605277120712 ~2018
15803694493131607388986312 ~2018
15804784163931609568327912 ~2018
15806360219931612720439912 ~2018
15807002432331614004864712 ~2018
Home
4.694.480 digits
e-mail
25-03-30