Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9668073401919336146803912 ~2017
9668118409119336236818312 ~2017
9668379212319336758424712 ~2017
9669164198319338328396712 ~2017
9669386545119338773090312 ~2017
9669626843919339253687912 ~2017
9670188512319340377024712 ~2017
9670471194158022827164712 ~2018
9670647614319341295228712 ~2017
9671391824319342783648712 ~2017
9671955974319343911948712 ~2017
9672028309119344056618312 ~2017
9672608244158035649464712 ~2018
9672755191119345510382312 ~2017
9672884684319345769368712 ~2017
9673344379119346688758312 ~2017
967516946511040...59319917 2023
9676152291758056913750312 ~2018
9676479439119352958878312 ~2017
9676495391919352990783912 ~2017
9676685756319353371512712 ~2017
9677021273919354042547912 ~2017
9677225767119354451534312 ~2017
9677258168319354516336712 ~2017
9677670278319355340556712 ~2017
Exponent Prime Factor Dig. Year
967840431071335...94876714 2024
9679226030319358452060712 ~2017
9679382755119358765510312 ~2017
9680829440319361658880712 ~2017
9681924764319363849528712 ~2017
9682026635919364053271912 ~2017
9682745210319365490420712 ~2017
9682999045119365998090312 ~2017
9684083036319368166072712 ~2017
9685738337358114430023912 ~2018
9685887128319371774256712 ~2017
9686060497758116362986312 ~2018
9686302717119372605434312 ~2017
9686907956319373815912712 ~2017
9687678484158126070904712 ~2018
9688410908319376821816712 ~2017
9689009191119378018382312 ~2017
9689066311358134397867912 ~2018
9690587447919381174895912 ~2017
9691173200319382346400712 ~2017
9691597825119383195650312 ~2017
9691966111758151796670312 ~2018
9692425537758154553226312 ~2018
9692529488319385058976712 ~2017
969259682412384...18728714 2024
Exponent Prime Factor Dig. Year
9692732600319385465200712 ~2017
9693194255919386388511912 ~2017
9695417159919390834319912 ~2017
9696563975919393127951912 ~2017
9696973824158181842944712 ~2018
9697821701919395643403912 ~2017
9698281253919396562507912 ~2017
9698308520319396617040712 ~2017
9698572073919397144147912 ~2017
9698938805919397877611912 ~2017
9699931021119399862042312 ~2017
9699972014319399944028712 ~2017
9700114055919400228111912 ~2017
9701145626319402291252712 ~2017
9702506510319405013020712 ~2017
9702975149919405950299912 ~2017
9703779793119407559586312 ~2017
9704275058319408550116712 ~2017
9704901505358229409031912 ~2018
9705426677977643413423312 ~2018
9706077563919412155127912 ~2017
9708167339919416334679912 ~2017
9708317599358249905595912 ~2018
9708647881358251887287912 ~2018
9709807934319419615868712 ~2017
Exponent Prime Factor Dig. Year
9710264563119420529126312 ~2017
9710518583919421037167912 ~2017
9710585533119421171066312 ~2017
9710612563119421225126312 ~2017
9710756198319421512396712 ~2017
9711200729919422401459912 ~2017
9712235713119424471426312 ~2017
9713046505119426093010312 ~2017
9714321421119428642842312 ~2017
9715438103919430876207912 ~2017
971562500531770...59656715 2023
9715821697119431643394312 ~2017
9715914064777727312517712 ~2018
9718013809119436027618312 ~2017
9720009161919440018323912 ~2017
9720258205119440516410312 ~2017
9720825785919441651571912 ~2017
9720838273119441676546312 ~2017
9721182787758327096726312 ~2018
9721317957758327907746312 ~2018
9721569425919443138851912 ~2017
9721959434977775675479312 ~2018
9722166233919444332467912 ~2017
9723489823119446979646312 ~2017
9724174943919448349887912 ~2017
Home
4.709.457 digits
e-mail
25-04-06