Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13399741769926799483539912 ~2018
13400797597126801595194312 ~2018
13401972629926803945259912 ~2018
13402020326326804040652712 ~2018
13402220816326804441632712 ~2018
13403497351126806994702312 ~2018
13404211535926808423071912 ~2018
13406556239926813112479912 ~2018
13409031107926818062215912 ~2018
1340959245313030...94400714 2024
13410076118326820152236712 ~2018
13410857293126821714586312 ~2018
1341102036591772...23719915 2024
13411126141126822252282312 ~2018
13411305551926822611103912 ~2018
13411705003126823410006312 ~2018
13412131585126824263170312 ~2018
13412496596326824993192712 ~2018
13413908857126827817714312 ~2018
13415097638326830195276712 ~2018
13418359745926836719491912 ~2018
13419220229926838440459912 ~2018
13419671461126839342922312 ~2018
13420040053126840080106312 ~2018
13421624372326843248744712 ~2018
Exponent Prime Factor Dig. Year
13422688573126845377146312 ~2018
13423284985126846569970312 ~2018
13423893511126847787022312 ~2018
13424357150326848714300712 ~2018
13425506375926851012751912 ~2018
13426636307926853272615912 ~2018
13426790618326853581236712 ~2018
13426876957126853753914312 ~2018
13427682133126855364266312 ~2018
13428481538326856963076712 ~2018
13428953783926857907567912 ~2018
13430336023126860672046312 ~2018
13430950975126861901950312 ~2018
13431148928326862297856712 ~2018
13431835853926863671707912 ~2018
13432005703126864011406312 ~2018
13434074600326868149200712 ~2018
13437574241926875148483912 ~2018
13437601673926875203347912 ~2018
13438090634326876181268712 ~2018
13438259765926876519531912 ~2018
13439025499126878050998312 ~2018
13439173825126878347650312 ~2018
13439214019126878428038312 ~2018
13439307068326878614136712 ~2018
Exponent Prime Factor Dig. Year
13440523717126881047434312 ~2018
13441345319926882690639912 ~2018
13443442345126886884690312 ~2018
13443668012326887336024712 ~2018
1344757004831441...91777715 2023
13448680357126897360714312 ~2018
13450864631926901729263912 ~2018
13450959677926901919355912 ~2018
13451299993126902599986312 ~2018
13451918459926903836919912 ~2018
13452963212326905926424712 ~2018
13455004199926910008399912 ~2018
13455221957926910443915912 ~2018
13455285731926910571463912 ~2018
13456928306326913856612712 ~2018
13457643361126915286722312 ~2018
13459413236326918826472712 ~2018
13461352211926922704423912 ~2018
13462597808326925195616712 ~2018
13462773020326925546040712 ~2018
13463297171926926594343912 ~2018
13465319348326930638696712 ~2018
13465859576326931719152712 ~2018
13466195329126932390658312 ~2018
13466637530326933275060712 ~2018
Exponent Prime Factor Dig. Year
13467076184326934152368712 ~2018
13467141782326934283564712 ~2018
13467521258326935042516712 ~2018
13467577687126935155374312 ~2018
13468678207126937356414312 ~2018
1346970350931616...21116114 2024
13469968118326939936236712 ~2018
13470079550326940159100712 ~2018
1347831761694286...02174314 2023
13480437344326960874688712 ~2018
13480464629926960929259912 ~2018
13480938983926961877967912 ~2018
13481476687126962953374312 ~2018
13482557447926965114895912 ~2018
13482841579126965683158312 ~2018
13483272692326966545384712 ~2018
13484025337126968050674312 ~2018
13485482051926970964103912 ~2018
13488182089126976364178312 ~2018
1348855500433156...71006314 2024
13489329823126978659646312 ~2018
13489403423926978806847912 ~2018
13490599574326981199148712 ~2018
13491022153126982044306312 ~2018
13493661341926987322683912 ~2018
Home
4.709.457 digits
e-mail
25-04-06