Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12131510273924263020547912 ~2018
1213154003176987...58259314 2024
12131598938324263197876712 ~2018
12131825551124263651102312 ~2018
12132206501924264413003912 ~2018
12132210425924264420851912 ~2018
12132747834172796487004712 ~2019
12134334121124268668242312 ~2018
12134768642324269537284712 ~2018
1213540836372038...05101714 2024
12135867767924271735535912 ~2018
12139040095124278080190312 ~2018
12140138821124280277642312 ~2018
12140246217772841477306312 ~2019
12141100175924282200351912 ~2018
12141789913124283579826312 ~2018
12143794249124287588498312 ~2018
12144672113924289344227912 ~2018
12144974611124289949222312 ~2018
12145791391124291582782312 ~2018
1214693170616292...23759914 2024
12146996956172881981736712 ~2019
12147842041772887052250312 ~2019
12148261163924296522327912 ~2018
12148771034324297542068712 ~2018
Exponent Prime Factor Dig. Year
12149216077124298432154312 ~2018
12151643131372909858787912 ~2019
1215230398439843...27283114 2023
12152349113924304698227912 ~2018
12152385302324304770604712 ~2018
12154543341772927260050312 ~2019
12156386569124312773138312 ~2018
12157231781924314463563912 ~2018
12158434357124316868714312 ~2018
12158999336324317998672712 ~2018
12159174978172955049868712 ~2019
12159355109924318710219912 ~2018
12159614579924319229159912 ~2018
12160147753124320295506312 ~2018
12160825405124321650810312 ~2018
12161299187372967795123912 ~2019
12161585678324323171356712 ~2018
12161695373924323390747912 ~2018
12161806123124323612246312 ~2018
12162801668324325603336712 ~2018
12163394453924326788907912 ~2018
12163822369124327644738312 ~2018
12164047937924328095875912 ~2018
1216474261372432...22740114 2024
12165702221924331404443912 ~2018
Exponent Prime Factor Dig. Year
12165726042172994356252712 ~2019
12168686207924337372415912 ~2018
12169266277124338532554312 ~2018
12169385285924338770571912 ~2018
12169466645924338933291912 ~2018
12170189933924340379867912 ~2018
12170691517124341383034312 ~2018
12171674425124343348850312 ~2018
12171678617373030071703912 ~2019
12171768175124343536350312 ~2018
12172115087924344230175912 ~2018
12174921062324349842124712 ~2018
12176046673124352093346312 ~2018
12176368256324352736512712 ~2018
12177858077924355716155912 ~2018
12178100456324356200912712 ~2018
12178715165924357430331912 ~2018
12178774772324357549544712 ~2018
12179578867124359157734312 ~2018
12179622386324359244772712 ~2018
12179923861124359847722312 ~2018
12180625225773083751354312 ~2019
12181222187924362444375912 ~2018
12181223819924362447639912 ~2018
12181983404324363966808712 ~2018
Exponent Prime Factor Dig. Year
12182724137924365448275912 ~2018
12184059775124368119550312 ~2018
12184273057124368546114312 ~2018
12185043983924370087967912 ~2018
12185380226324370760452712 ~2018
12186408058173118448348712 ~2019
12186633635924373267271912 ~2018
12186878989124373757978312 ~2018
1218713637011423...80276915 2025
12187310894324374621788712 ~2018
12187491773924374983547912 ~2018
12188885857124377771714312 ~2018
12189292987773135757926312 ~2019
12189636925124379273850312 ~2018
12190801417773144808506312 ~2019
12190964984324381929968712 ~2018
12191491520324382983040712 ~2018
12191738304173150429824712 ~2019
12191772413924383544827912 ~2018
12192098915924384197831912 ~2018
12192307063124384614126312 ~2018
12192990953924385981907912 ~2018
12193394497124386788994312 ~2018
12195503702324391007404712 ~2018
12195529513124391059026312 ~2018
Home
4.724.182 digits
e-mail
25-04-13