Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8471237198316942474396712 ~2016
847127328013642...10443114 2024
8471698999116943397998312 ~2016
8472225593916944451187912 ~2016
8472228961116944457922312 ~2016
8472474809916944949619912 ~2016
8472657583116945315166312 ~2016
8472790436316945580872712 ~2016
847316601412762...20596714 2024
847320775971338...26032714 2024
8473404385167787235080912 ~2018
8474517593916949035187912 ~2016
8475049218150850295308712 ~2018
8475200382150851202292712 ~2018
8475380960316950761920712 ~2016
8475779936316951559872712 ~2016
8476723634316953447268712 ~2016
8477151800316954303600712 ~2016
8477387432316954774864712 ~2016
8477778893916955557787912 ~2016
8477816791750866900750312 ~2018
8478298868316956597736712 ~2016
8479060829916958121659912 ~2016
8479121137116958242274312 ~2016
8479531991916959063983912 ~2016
Exponent Prime Factor Dig. Year
8479776205116959552410312 ~2016
8481056277750886337666312 ~2018
8481283256316962566512712 ~2016
8481560521116963121042312 ~2016
848216540113749...07286314 2023
8482628777916965257555912 ~2016
8483476217916966952435912 ~2016
8483498393916966996787912 ~2016
8483939201916967878403912 ~2016
8485206164316970412328712 ~2016
8485489597116970979194312 ~2016
8485878412150915270472712 ~2018
8486659046316973318092712 ~2016
8487197772150923186632712 ~2018
8487260420316974520840712 ~2016
8487401813916974803627912 ~2016
8487402097116974804194312 ~2016
8487747649167901981192912 ~2018
8488738574316977477148712 ~2016
8488878655116977757310312 ~2016
8488994423916977988847912 ~2016
8489349874150936099244712 ~2018
8490227609916980455219912 ~2016
8490231059916980462119912 ~2016
8490249055750941494334312 ~2018
Exponent Prime Factor Dig. Year
8490771210150944627260712 ~2018
8490878089767927024717712 ~2018
8491858009116983716018312 ~2016
8492378555916984757111912 ~2016
8493273150150959638900712 ~2018
8493432059916986864119912 ~2016
8493551984316987103968712 ~2016
8493586718967948693751312 ~2018
8493592771767948742173712 ~2018
8493792517350962755103912 ~2018
8494399243116988798486312 ~2016
8494790051916989580103912 ~2016
8494851371916989702743912 ~2016
849567012793211...08346314 2023
8496045209916992090419912 ~2016
8497814006316995628012712 ~2016
8498047649916996095299912 ~2016
8499293629750995761778312 ~2018
8499717763350998306579912 ~2018
8500901573917001803147912 ~2016
850094807095100...42540114 2023
8501023889917002047779912 ~2016
8501439998968011519991312 ~2018
8501543606317003087212712 ~2016
8501645561917003291123912 ~2016
Exponent Prime Factor Dig. Year
8501824126768014593013712 ~2018
8501844203917003688407912 ~2016
8502794318317005588636712 ~2016
8503139948317006279896712 ~2016
8503484785117006969570312 ~2016
8503976777351023860663912 ~2018
8504055388768032443109712 ~2018
8504059613917008119227912 ~2016
8504116145917008232291912 ~2016
8504385619351026313715912 ~2018
8504766209917009532419912 ~2016
8505442166317010884332712 ~2016
8505623839117011247678312 ~2016
8505632426317011264852712 ~2016
8505820460317011640920712 ~2016
8506354009168050832072912 ~2018
8507815898317015631796712 ~2016
8509644320317019288640712 ~2016
8509768589917019537179912 ~2016
8509953115117019906230312 ~2016
8510316914317020633828712 ~2016
8510384215117020768430312 ~2016
8510558113117021116226312 ~2016
8510700631117021401262312 ~2016
8511393967117022787934312 ~2016
Home
4.724.182 digits
e-mail
25-04-13