Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5700110120311400220240712 ~2015
570025316393146...46472914 2023
570033633532542...05543914 2024
5700403429111400806858312 ~2015
5700719407111401438814312 ~2015
5700817157911401634315912 ~2015
5701003327111402006654312 ~2015
5701202537911402405075912 ~2015
5701236233911402472467912 ~2015
5701459613911402919227912 ~2015
5701523396311403046792712 ~2015
5701680739145613445912912 ~2016
5701961765911403923531912 ~2015
5702076427779829069987912 ~2017
5702170285111404340570312 ~2015
5702327545111404655090312 ~2015
5702350640945618805127312 ~2016
5702765948311405531896712 ~2015
5703006287911406012575912 ~2015
5703778634311407557268712 ~2015
5703819421111407638842312 ~2015
5704983457111409966914312 ~2015
5705098004311410196008712 ~2015
570514268931551...11489714 2023
5705144378311410288756712 ~2015
Exponent Prime Factor Dig. Year
5705308880311410617760712 ~2015
5705314097911410628195912 ~2015
5705438143111410876286312 ~2015
5705642585911411285171912 ~2015
5705896909111411793818312 ~2015
5706576704311413153408712 ~2015
5706938369911413876739912 ~2015
5706969857911413939715912 ~2015
5706992143111413984286312 ~2015
5707099411111414198822312 ~2015
5707282427911414564855912 ~2015
5707366346311414732692712 ~2015
5707599683911415199367912 ~2015
5707617397111415234794312 ~2015
5707974483734247846902312 ~2016
5708155988311416311976712 ~2015
5708343493111416686986312 ~2015
5708445811111416891622312 ~2015
5708657699911417315399912 ~2015
5708658151111417316302312 ~2015
5708683823911417367647912 ~2015
5709895398134259372388712 ~2016
5709957404311419914808712 ~2015
5710196696311420393392712 ~2015
5710201973911420403947912 ~2015
Exponent Prime Factor Dig. Year
5710741471111421482942312 ~2015
5711724398311423448796712 ~2015
5711728012745693824101712 ~2017
5711899601911423799203912 ~2015
5711906425779966689959912 ~2017
5712040416757120404167112 ~2017
5712233629111424467258312 ~2015
5712555284311425110568712 ~2015
5712564860311425129720712 ~2015
5712740846311425481692712 ~2015
5712786101911425572203912 ~2015
5713414421911426828843912 ~2015
5713455691111426911382312 ~2015
5713465549111426931098312 ~2015
5713704065911427408131912 ~2015
5713895299111427790598312 ~2015
571437403433394...76374314 2024
5714701172311429402344712 ~2015
5714933153911429866307912 ~2015
5715297439145722379512912 ~2017
5715483957157154839571112 ~2017
5715641480311431282960712 ~2015
5715678746311431357492712 ~2015
5715721285111431442570312 ~2015
5716120651334296723907912 ~2016
Exponent Prime Factor Dig. Year
5716485019111432970038312 ~2015
5716893396134301360376712 ~2016
5716907009911433814019912 ~2015
5716925542134301553252712 ~2016
5716990220311433980440712 ~2015
5718001703334308010219912 ~2016
5718147104311436294208712 ~2015
571846043834346...33108114 2023
5718516673734311100042312 ~2016
5718672785911437345571912 ~2015
5718676673911437353347912 ~2015
5718864641911437729283912 ~2015
5719289132311438578264712 ~2015
5719462343334316774059912 ~2016
5719463881145755711048912 ~2017
5719546931911439093863912 ~2015
5719651388311439302776712 ~2015
5719757066311439514132712 ~2015
5719838095111439676190312 ~2015
5720072861911440145723912 ~2015
5720090510311440181020712 ~2015
5720179928311440359856712 ~2015
5720427325111440854650312 ~2015
5720594503111441189006312 ~2015
5720646227911441292455912 ~2015
Home
4.888.230 digits
e-mail
25-06-29