Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11027091551922054183103912 ~2017
11027586659366165519955912 ~2018
11027695057122055390114312 ~2017
11028652159122057304318312 ~2017
11029027718322058055436712 ~2017
11029655755766177934534312 ~2018
11030708498322061416996712 ~2017
11030723618322061447236712 ~2017
11031192644322062385288712 ~2017
11032319567922064639135912 ~2017
11033996948322067993896712 ~2017
11035015817922070031635912 ~2017
11036454955122072909910312 ~2017
1103657151713995...89190314 2023
11038358981922076717963912 ~2017
11038607615922077215231912 ~2017
11039426912322078853824712 ~2017
11040275491122080550982312 ~2017
11040805866166244835196712 ~2018
11040882959922081765919912 ~2017
11040929867922081859735912 ~2017
11041609679922083219359912 ~2017
11042314376322084628752712 ~2017
11042766461922085532923912 ~2017
11043052181922086104363912 ~2017
Exponent Prime Factor Dig. Year
11043644462322087288924712 ~2017
11043838520322087677040712 ~2017
11044576649922089153299912 ~2017
11044855055922089710111912 ~2017
11045163074322090326148712 ~2017
11046427989766278567938312 ~2018
11046912032322093824064712 ~2017
11048036765922096073531912 ~2017
11048321833766289931002312 ~2018
11048683105122097366210312 ~2017
11049341921922098683843912 ~2017
11049866203366299197219912 ~2018
1105026422691657...34035114 2024
11050481063922100962127912 ~2017
11050643300322101286600712 ~2017
11051347699366308086195912 ~2018
11052592514322105185028712 ~2017
11052702595122105405190312 ~2017
1105338489111790...52358314 2024
1105462209016610...09879914 2023
11056205053122112410106312 ~2017
11056610864322113221728712 ~2017
11056660400322113320800712 ~2017
11057555431122115110862312 ~2017
11059765507122119531014312 ~2017
Exponent Prime Factor Dig. Year
11060073921766360443530312 ~2018
11060163026322120326052712 ~2017
11061667153122123334306312 ~2017
11061673241922123346483912 ~2017
11064396158322128792316712 ~2017
11065223609922130447219912 ~2017
11065288949922130577899912 ~2017
11065359524322130719048712 ~2017
11065681091922131362183912 ~2017
11065708477122131416954312 ~2017
11065715297922131430595912 ~2017
11066364590322132729180712 ~2017
11067154373922134308747912 ~2017
11069397997122138795994312 ~2017
11069454599922138909199912 ~2017
11070066319122140132638312 ~2017
11070740927366424445563912 ~2018
11070944737122141889474312 ~2017
11071352621922142705243912 ~2017
11072612375922145224751912 ~2017
11073085634322146171268712 ~2017
11073652945122147305890312 ~2017
11073663191922147326383912 ~2017
1107404080812834...46873714 2024
11074218212322148436424712 ~2017
Exponent Prime Factor Dig. Year
11074311530322148623060712 ~2017
11074615773766447694642312 ~2018
11075362580322150725160712 ~2017
11075529185922151058371912 ~2017
11076363011922152726023912 ~2017
11076424513122152849026312 ~2017
1107676935291089...43253715 2025
1107786583911604...35016915 2024
11078999690322157999380712 ~2017
11079139687122158279374312 ~2017
11079179460166475076760712 ~2018
11080076603922160153207912 ~2017
11080080875922160161751912 ~2017
11080454827122160909654312 ~2017
11081087690322162175380712 ~2017
11081534555922163069111912 ~2017
11081735885922163471771912 ~2017
11082864281922165728563912 ~2017
11083515099766501090598312 ~2018
11084431454322168862908712 ~2017
11085395204322170790408712 ~2017
11085793249122171586498312 ~2017
11085921959922171843919912 ~2017
11086144905766516869434312 ~2018
11087980856322175961712712 ~2017
Home
4.724.182 digits
e-mail
25-04-13