Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10848571349921697142699912 ~2017
10849561423121699122846312 ~2017
10850676314321701352628712 ~2017
10851425450321702850900712 ~2017
10852003388321704006776712 ~2017
10852074367365112446203912 ~2018
10852177007921704354015912 ~2017
10852996013921705992027912 ~2017
10853018180321706036360712 ~2017
10853370353921706740707912 ~2017
10854004315121708008630312 ~2017
10854143582321708287164712 ~2017
10855720418321711440836712 ~2017
10855760074165134560444712 ~2018
10856223211121712446422312 ~2017
10856427449921712854899912 ~2017
10856713016321713426032712 ~2017
10857019736321714039472712 ~2017
10857216056321714432112712 ~2017
10858504772321717009544712 ~2017
10858592575121717185150312 ~2017
10860076718321720153436712 ~2017
10860314191765161885150312 ~2018
10860964309121721928618312 ~2017
10862049877121724099754312 ~2017
Exponent Prime Factor Dig. Year
10862364253121724728506312 ~2017
10862833717765177002306312 ~2018
10863189524321726379048712 ~2017
10863429367121726858734312 ~2017
10864223815121728447630312 ~2017
10864698899365188193395912 ~2018
10865713706321731427412712 ~2017
10867459133921734918267912 ~2017
10868203538321736407076712 ~2017
10868352367121736704734312 ~2017
10868965334321737930668712 ~2017
10869149227121738298454312 ~2017
10870186833765221121002312 ~2018
10870941230321741882460712 ~2017
10872392813921744785627912 ~2017
10872395402321744790804712 ~2017
10872792449921745584899912 ~2017
10873340143365240040859912 ~2018
10875870041921751740083912 ~2017
10876184905121752369810312 ~2017
10877913272321755826544712 ~2017
10878356900321756713800712 ~2017
10878756941921757513883912 ~2017
10879194008321758388016712 ~2017
10880248951121760497902312 ~2017
Exponent Prime Factor Dig. Year
10880836631921761673263912 ~2017
10881478181921762956363912 ~2017
10882269217121764538434312 ~2017
10882636067921765272135912 ~2017
1088433267772176...35540114 2024
10884677545121769355090312 ~2017
10884710803121769421606312 ~2017
10886263568321772527136712 ~2017
10886443865921772887731912 ~2017
10886828659121773657318312 ~2017
10887212701765323276210312 ~2018
10887452003921774904007912 ~2017
10888231081121776462162312 ~2017
10888974425921777948851912 ~2017
10889022167921778044335912 ~2017
10889124937365334749623912 ~2018
10889678123921779356247912 ~2017
10889790353921779580707912 ~2017
1089128519213920...69156114 2023
10891460261921782920523912 ~2017
10893051500321786103000712 ~2017
10893097874321786195748712 ~2017
10893452378321786904756712 ~2017
10893501487121787002974312 ~2017
10893844200165363065200712 ~2018
Exponent Prime Factor Dig. Year
10894280981921788561963912 ~2017
10894633636165367801816712 ~2018
10894665464321789330928712 ~2017
10894711040321789422080712 ~2017
10895685257921791370515912 ~2017
10895946283121791892566312 ~2017
10897894763921795789527912 ~2017
10897925353365387552119912 ~2018
10898584658321797169316712 ~2017
10899029615365394177691912 ~2018
10899229874321798459748712 ~2017
10899467143121798934286312 ~2017
10900920359921801840719912 ~2017
10901546492321803092984712 ~2017
10901696366321803392732712 ~2017
10902481790321804963580712 ~2017
10902847721921805695443912 ~2017
10902932185121805864370312 ~2017
10903159169921806318339912 ~2017
10904046476321808092952712 ~2017
10904207204321808414408712 ~2017
1090441213212529...14647314 2024
10904435417921808870835912 ~2017
10904780570321809561140712 ~2017
10905151633121810303266312 ~2017
Home
4.724.182 digits
e-mail
25-04-13