Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
204490852314089817046311 ~2012
204492477114089849542311 ~2012
2045046554916360372439312 ~2013
204510442194090208843911 ~2012
204511263594090225271911 ~2012
204517062594090341251911 ~2012
204526637994090532759911 ~2012
2045266738320452667383112 ~2013
204529985394090599707911 ~2012
2045317411712271904470312 ~2013
2045367031312272202187912 ~2013
204536907594090738151911 ~2012
2045381935712272291614312 ~2013
2045543185312273259111912 ~2013
204563264634091265292711 ~2012
204565148034091302960711 ~2012
204576577434091531548711 ~2012
204578164794091563295911 ~2012
204579556314091591126311 ~2012
204584281434091685628711 ~2012
204615831834092316636711 ~2012
204622028634092440572711 ~2012
2046240592112277443552712 ~2013
204626059794092521195911 ~2012
2046389378916371115031312 ~2013
Exponent Prime Factor Dig. Year
204641900034092838000711 ~2012
2046450307920464503079112 ~2013
2046492172320464921723112 ~2013
204651178314093023566311 ~2012
2046522520320465225203112 ~2013
204661193394093223867911 ~2012
204667514994093350299911 ~2012
204686773194093735463911 ~2012
204687344634093746892711 ~2012
204700308594094006171911 ~2012
204702384714094047694311 ~2012
204708310914094166218311 ~2012
204710209914094204198311 ~2012
204721493634094429872711 ~2012
204728316234094566324711 ~2012
204729769434094595388711 ~2012
204768323394095366467911 ~2012
2047694533712286167202312 ~2013
2047726087312286356523912 ~2013
204779194314095583886311 ~2012
2048056687716384453501712 ~2013
2048100007712288600046312 ~2013
204811460871083...50805715 2023
204814479114096289582311 ~2012
204824551314096491026311 ~2012
Exponent Prime Factor Dig. Year
2048445715949162697181712 ~2014
204851783034097035660711 ~2012
2048525140112291150840712 ~2013
2048647723716389181789712 ~2013
204876599034097531980711 ~2012
204882126834097642536711 ~2012
204885333714097706674311 ~2012
2048905410112293432460712 ~2013
2048927157732782834523312 ~2014
204911588394098231767911 ~2012
204925516333836...65697714 2023
2049303515312295821091912 ~2013
204931121034098622420711 ~2012
204939699594098793991911 ~2012
204949751034098995020711 ~2012
204950409714099008194311 ~2012
204950987514099019750311 ~2012
2049817801716398542413712 ~2013
204989036994099780739911 ~2012
204989154714099783094311 ~2012
204997939434099958788711 ~2012
205001203794100024075911 ~2012
205009116114100182322311 ~2012
2050094691136901704439912 ~2014
205011636714100232734311 ~2012
Exponent Prime Factor Dig. Year
2050119940116400959520912 ~2013
205025889714100517794311 ~2012
2050314610116402516880912 ~2013
205046527194100930543911 ~2012
205050255594101005111911 ~2012
205056031434101120628711 ~2012
2050594091312303564547912 ~2013
2050745765312304474591912 ~2013
205086272394101725447911 ~2012
205098100194101962003911 ~2012
205101808434102036168711 ~2012
205106883714102137674311 ~2012
205117618434102352368711 ~2012
205121745834102434916711 ~2012
205123167714102463354311 ~2012
205125397314102507946311 ~2012
205127572314102551446311 ~2012
205133708514102674170311 ~2012
205161001794103220035911 ~2012
205163677194103273543911 ~2012
205165560234103311204711 ~2012
205183261314103665226311 ~2012
2051832682716414661461712 ~2013
2051886033749245264808912 ~2014
2051886876112311321256712 ~2013
Home
5.157.210 digits
e-mail
25-11-02