Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8352397147350114382883912 ~2017
8352435197916704870395912 ~2016
8353043215116706086430312 ~2016
8353284031116706568062312 ~2016
8353416211116706832422312 ~2016
8353594714166828757712912 ~2018
8353733914150122403484712 ~2017
8354309708316708619416712 ~2016
8354898218316709796436712 ~2016
8354953139916709906279912 ~2016
8355065360316710130720712 ~2016
8355346552166842772416912 ~2018
8355407521116710815042312 ~2016
8355448171116710896342312 ~2016
8355709733916711419467912 ~2016
835571581614328...92739914 2024
8355742063116711484126312 ~2016
8355985627766847885021712 ~2018
8356073111916712146223912 ~2016
8357267815116714535630312 ~2016
8357845349916715690699912 ~2016
8358350030316716700060712 ~2016
8358534053916717068107912 ~2016
8358845107116717690214312 ~2016
8358870889116717741778312 ~2016
Exponent Prime Factor Dig. Year
8359713875916719427751912 ~2016
8360202638316720405276712 ~2016
8360768041750164608250312 ~2017
8360823853116721647706312 ~2016
8361039747750166238486312 ~2017
8361870458316723740916712 ~2016
8362076042316724152084712 ~2016
8362086839916724173679912 ~2016
8362271570316724543140712 ~2016
8362440599916724881199912 ~2016
8362626271116725252542312 ~2016
8363162825916726325651912 ~2016
8364249991116728499982312 ~2016
8364619895916729239791912 ~2016
8365512785916731025571912 ~2016
8365696593750194179562312 ~2017
8366244365916732488731912 ~2016
8366412601766931300813712 ~2018
8366824225766934593805712 ~2018
8366853303750201119822312 ~2017
8366870648316733741296712 ~2016
8366883799116733767598312 ~2016
8367278876316734557752712 ~2016
8367680018316735360036712 ~2016
8367768417750206610506312 ~2017
Exponent Prime Factor Dig. Year
8368495321116736990642312 ~2016
8368544843916737089687912 ~2016
8369298479916738596959912 ~2016
8370205913916740411827912 ~2016
8370698786966965590295312 ~2018
8371313691750227882150312 ~2017
8371759814316743519628712 ~2016
837206802911004...34920115 2025
8372106962316744213924712 ~2016
8372216816316744433632712 ~2016
8372496089916744992179912 ~2016
8373752629116747505258312 ~2016
837385452799445...07471314 2023
8374087735116748175470312 ~2016
8374504772316749009544712 ~2016
8374570903116749141806312 ~2016
8375967470316751934940712 ~2016
8376147476316752294952712 ~2016
8376744529116753489058312 ~2016
8376925580316753851160712 ~2016
8376929748150261578488712 ~2017
8377074821916754149643912 ~2016
8377275103350263650619912 ~2017
8377393991916754787983912 ~2016
8378295659916756591319912 ~2016
Exponent Prime Factor Dig. Year
8378963089116757926178312 ~2016
8379002359116758004718312 ~2016
8379537881916759075763912 ~2016
8379623414316759246828712 ~2016
8379946646316759893292712 ~2016
8381402613750288415682312 ~2017
8381719736316763439472712 ~2016
8382114493750292686962312 ~2017
8383068643167064549144912 ~2018
8383270835916766541671912 ~2016
8383880007750303280046312 ~2017
8384209841916768419683912 ~2016
8384334125916768668251912 ~2016
8384349349116768698698312 ~2016
8384743135116769486270312 ~2016
8384976097116769952194312 ~2016
8385909710316771819420712 ~2016
8386105094316772210188712 ~2016
8386848662316773697324712 ~2016
8387175791916774351583912 ~2016
8388319067916776638135912 ~2016
8388625421916777250843912 ~2016
8389516164150337096984712 ~2017
8389766179116779532358312 ~2016
8390698367916781396735912 ~2016
Home
4.724.182 digits
e-mail
25-04-13