Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6060399949336362399695912 ~2016
6061009729112122019458312 ~2015
6061046366312122092732712 ~2015
6062123883736372743302312 ~2016
6062149613912124299227912 ~2015
6062766986312125533972712 ~2015
6063153752312126307504712 ~2015
6063299586760632995867112 ~2017
606371720875297...35203315 2025
606388150633310...02439914 2023
6064114575160641145751112 ~2017
6064506284312129012568712 ~2015
6065055361112130110722312 ~2015
6065104151912130208303912 ~2015
6065211281912130422563912 ~2015
6065490187112130980374312 ~2015
6065576738312131153476712 ~2015
6066264347948530114783312 ~2017
6066287435336397724611912 ~2016
6066383477912132766955912 ~2015
6066672872312133345744712 ~2015
606717744791601...46245714 2023
606722332574647...67486314 2023
6067710332312135420664712 ~2015
6068027514136408165084712 ~2016
Exponent Prime Factor Dig. Year
6068307626312136615252712 ~2015
6068674331912137348663912 ~2015
6068871484136413228904712 ~2016
6069306319148554450552912 ~2017
6069401923736416411542312 ~2016
6069423715148555389720912 ~2017
6069838933112139677866312 ~2015
6070410577112140821154312 ~2015
6070961929112141923858312 ~2015
6071055835112142111670312 ~2015
6071295247148570361976912 ~2017
6071344381112142688762312 ~2015
6071618920748572951365712 ~2017
6071621587336429729523912 ~2016
6071880014312143760028712 ~2015
6071947256312143894512712 ~2015
6071984732312143969464712 ~2015
6072164554148577316432912 ~2017
6072286459112144572918312 ~2015
6072941606312145883212712 ~2015
6072988051112145976102312 ~2015
6073052672312146105344712 ~2015
6073555111336441330667912 ~2016
6073847844760738478447112 ~2017
6073903619912147807239912 ~2015
Exponent Prime Factor Dig. Year
6073997033912147994067912 ~2015
6074112743912148225487912 ~2015
6074408381912148816763912 ~2015
6074450263112148900526312 ~2015
6074723215112149446430312 ~2015
6074920244312149840488712 ~2015
6075005606312150011212712 ~2015
6075051572312150103144712 ~2015
6075163429748601307437712 ~2017
6075856331912151712663912 ~2015
6075942613112151885226312 ~2015
6075945821912151891643912 ~2015
6076054049912152108099912 ~2015
6076198463912152396927912 ~2015
6076217263748609738109712 ~2017
6076402930148611223440912 ~2017
6076467293336458803759912 ~2016
6076708841912153417683912 ~2015
6077031029912154062059912 ~2015
6077647658312155295316712 ~2015
607795717912528...86505714 2023
6077999609912155999219912 ~2015
6078078141736468468850312 ~2016
6078101564312156203128712 ~2015
6079253069912158506139912 ~2015
Exponent Prime Factor Dig. Year
6079502672312159005344712 ~2015
6079576171112159152342312 ~2015
6079717745912159435491912 ~2015
6079804649912159609299912 ~2015
6079814755112159629510312 ~2015
6080350351112160700702312 ~2015
6080362981112160725962312 ~2015
6080516441912161032883912 ~2015
6080541716312161083432712 ~2015
6080701622312161403244712 ~2015
6080829290312161658580712 ~2015
6081064325912162128651912 ~2015
6081349787912162699575912 ~2015
6081375989912162751979912 ~2015
6081687439960816874399112 ~2017
6081820285336490921711912 ~2016
6082053901112164107802312 ~2015
6082369688312164739376712 ~2015
6082566245912165132491912 ~2015
6082623223112165246446312 ~2015
6082683466136496100796712 ~2016
6082712089112165424178312 ~2015
6082986737912165973475912 ~2015
608310081234720...30344914 2024
6083591102312167182204712 ~2015
Home
4.724.182 digits
e-mail
25-04-13