Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
185845872233716917444711 ~2011
185862112193717242243911 ~2011
185876390393717527807911 ~2011
185879316713717586334311 ~2011
185880486833717609736711 ~2011
1858838693914870709551312 ~2013
185893217033717864340711 ~2011
185895345113717906902311 ~2011
1859000511711154003070312 ~2012
185900766713718015334311 ~2011
185915179793718303595911 ~2011
185919523913718390478311 ~2011
185929769993718595399911 ~2011
1859308065711155848394312 ~2012
185935618793718712375911 ~2011
185935689233718713784711 ~2011
1859479723714875837789712 ~2013
185959701713719194034311 ~2011
1859623408714876987269712 ~2013
185964164393719283287911 ~2011
185970702233719414044711 ~2011
1859718827311158312963912 ~2012
185978859593719577191911 ~2011
185981647313719632946311 ~2011
185981881793719637635911 ~2011
Exponent Prime Factor Dig. Year
1859839012111159034072712 ~2012
1859847846111159087076712 ~2012
185985544793719710895911 ~2011
185992225913719844518311 ~2011
1859937838111159627028712 ~2012
186004352993720087059911 ~2011
1860072081133481297459912 ~2014
186017803313720356066311 ~2011
186018680033720373600711 ~2011
186022269833720445396711 ~2011
186024212033720484240711 ~2011
1860397468114883179744912 ~2013
1860420187311162521123912 ~2012
186053222513721064450311 ~2011
1860620898729769934379312 ~2013
1860664153114885313224912 ~2013
1860805334914886442679312 ~2013
186091662593721833251911 ~2011
186095675033721913500711 ~2011
186102850193722057003911 ~2011
1861043055118610430551112 ~2013
186104370113722087402311 ~2011
1861124320714888994565712 ~2013
186116074313722321486311 ~2011
186117508313722350166311 ~2011
Exponent Prime Factor Dig. Year
186127615913722552318311 ~2011
1861311699711167870198312 ~2012
1861318693726058461711912 ~2013
186140008313722800166311 ~2011
186143044913722860898311 ~2011
186155326793723106535911 ~2011
1861579925311169479551912 ~2012
186164554793723291095911 ~2011
186164681633723293632711 ~2011
186164750513723295010311 ~2011
186166462313723329246311 ~2011
186168202193723364043911 ~2011
186180801713723616034311 ~2011
186187542113723750842311 ~2011
1861904127711171424766312 ~2012
186193085633723861712711 ~2011
186193920233723878404711 ~2011
186200601113724012022311 ~2011
186202454633724049092711 ~2011
1862027765311172166591912 ~2012
186203703113724074062311 ~2011
1862081735311172490411912 ~2012
186212719193724254383911 ~2011
186222048233724440964711 ~2011
1862274285711173645714312 ~2012
Exponent Prime Factor Dig. Year
1862289423711173736542312 ~2012
1862297167114898377336912 ~2013
186248174393724963487911 ~2011
1862521231344700509551312 ~2014
1862614975711175689854312 ~2012
1862630239711175781438312 ~2012
1862634931114901079448912 ~2013
1862649719914901197759312 ~2013
186270124793725402495911 ~2011
186272303993725446079911 ~2011
1862724425311176346551912 ~2012
1862738749711176432498312 ~2012
186277210433725544208711 ~2011
186289220513725784410311 ~2011
1862910111129806561777712 ~2013
1863046391311178278347912 ~2012
186323562713726471254311 ~2011
186324012833726480256711 ~2011
1863425980111180555880712 ~2012
186345182633726903652711 ~2011
186349568033726991360711 ~2011
186354257993727085159911 ~2011
186364983713727299674311 ~2011
186376577393727531547911 ~2011
186378511313727570226311 ~2011
Home
5.157.210 digits
e-mail
25-11-02