Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1844604799311067628795912 ~2012
184466935793689338715911 ~2011
1844790241933206224354312 ~2014
184486375913689727518311 ~2011
1844867689962725501456712 ~2014
1844868733114758949864912 ~2013
184491454433689829088711 ~2011
184495326113689906522311 ~2011
184499787593689995751911 ~2011
184501893113690037862311 ~2011
1845096450718450964507112 ~2013
184511373113690227462311 ~2011
1845201395977498458627912 ~2014
184520731313690414626311 ~2011
184522508633690450172711 ~2011
184522823513690456470311 ~2011
184527242993690544859911 ~2011
184536599633690731992711 ~2011
184539689993690793799911 ~2011
1845460341118454603411112 ~2013
1845528196318455281963112 ~2013
184557305393691146107911 ~2011
1845638640111073831840712 ~2012
184565102033691302040711 ~2011
184567285193691345703911 ~2011
Exponent Prime Factor Dig. Year
1845795829714766366637712 ~2013
184586340113691726802311 ~2011
184586790593691735811911 ~2011
184590241193691804823911 ~2011
184592232833691844656711 ~2011
184594718513691894370311 ~2011
1845963736955378912107112 ~2014
184617982793692359655911 ~2011
184654797713693095954311 ~2011
1846706256111080237536712 ~2012
184674542513693490850311 ~2011
184680704033693614080711 ~2011
184681197833693623956711 ~2011
184697692913693953858311 ~2011
184711299593694225991911 ~2011
184712961833694259236711 ~2011
1847145394111082872364712 ~2012
184730889233694617784711 ~2011
1847417611344338022671312 ~2014
184748886713694977734311 ~2011
184752212033695044240711 ~2011
184752590513695051810311 ~2011
1847549854329560797668912 ~2013
184760429513695208590311 ~2011
184775798633695515972711 ~2011
Exponent Prime Factor Dig. Year
184777807193695556143911 ~2011
1847804255311086825531912 ~2012
1847870991711087225950312 ~2012
184798285193695965703911 ~2011
1847986463311087918779912 ~2012
184800046193696000923911 ~2011
184801766513696035330311 ~2011
1848134712111088808272712 ~2012
184816423793696328475911 ~2011
184818832793696376655911 ~2011
1848220386729571526187312 ~2013
1848351029311090106175912 ~2012
1848421772925877904820712 ~2013
184845733793696914675911 ~2011
184853697233697073944711 ~2011
1848555063729576881019312 ~2013
184868333633697366672711 ~2011
184868569193697371383911 ~2011
184868631233697372624711 ~2011
1848691701118486917011112 ~2013
184871459033697429180711 ~2011
1848803419714790427357712 ~2013
184893149993697862999911 ~2011
1848937404111093624424712 ~2012
1848939763714791518109712 ~2013
Exponent Prime Factor Dig. Year
184896079433697921588711 ~2011
184898452193697969043911 ~2011
184918867793698377355911 ~2011
184922615033698452300711 ~2011
1849253873933286569730312 ~2014
184932691913698653838311 ~2011
1849332961114794663688912 ~2013
184962021713699240434311 ~2011
1849660009159189120291312 ~2014
184981088513699621770311 ~2011
184990737833699814756711 ~2011
184996463033699929260711 ~2011
1850166883114801335064912 ~2013
1850226084140704973850312 ~2014
1850272138329604354212912 ~2013
185037620993700752419911 ~2011
185052028793701040575911 ~2011
185054167313701083346311 ~2011
1850855375311105132251912 ~2012
1850902853914807222831312 ~2013
1850981665711105889994312 ~2012
1851089529711106537178312 ~2012
1851092515714808740125712 ~2013
1851166280914809330247312 ~2013
185118972233702379444711 ~2011
Home
5.157.210 digits
e-mail
25-11-02