Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7497765023959982120191312 ~2017
7498248685114996497370312 ~2016
7498306237974983062379112 ~2018
7500566705915001133411912 ~2016
7500944588315001889176712 ~2016
7501507382960012059063312 ~2017
7501778804960014230439312 ~2017
7501842933175018429331112 ~2018
7502400773915004801547912 ~2016
750335227492986...05410314 2023
7503457221175034572211112 ~2018
7503847153345023082919912 ~2017
7503884603345023307619912 ~2017
7504343600960034748807312 ~2017
7504700900315009401800712 ~2016
7504858649915009717299912 ~2016
7506108011915012216023912 ~2016
7506196453115012392906312 ~2016
7506272147960050177183312 ~2017
7506344137115012688274312 ~2016
7506441727760051533821712 ~2017
750700208994384...20501714 2024
7507549165115015098330312 ~2016
7507702585115015405170312 ~2016
7507943168315015886336712 ~2016
Exponent Prime Factor Dig. Year
7508167321115016334642312 ~2016
7508746838315017493676712 ~2016
7508987804315017975608712 ~2016
7509365825915018731651912 ~2016
7509708830315019417660712 ~2016
7510251023915020502047912 ~2016
7510341149915020682299912 ~2016
7510410977915020821955912 ~2016
7510655609960085244879312 ~2017
7510817933960086543471312 ~2017
7511429362145068576172712 ~2017
7511784313975117843139112 ~2018
7511966819915023933639912 ~2016
7512216584315024433168712 ~2016
7512220124315024440248712 ~2016
7512698752760101590021712 ~2017
7512765967115025531934312 ~2016
7512882779915025765559912 ~2016
7513633595915027267191912 ~2016
7514181637115028363274312 ~2016
7514607992315029215984712 ~2016
7514810165915029620331912 ~2016
7515002977115030005954312 ~2016
7515272743115030545486312 ~2016
7515330515915030661031912 ~2016
Exponent Prime Factor Dig. Year
7515419680760123357445712 ~2017
7516408201115032816402312 ~2016
7516621265915033242531912 ~2016
7517042483915034084967912 ~2016
7517175305345103051831912 ~2017
7517250929915034501859912 ~2016
7517462072315034924144712 ~2016
7518161102315036322204712 ~2016
7518487987760147903901712 ~2017
7518550160315037100320712 ~2016
7518801560315037603120712 ~2016
7519649959345117899755912 ~2017
7519996151915039992303912 ~2016
7520205793745121234762312 ~2017
7520236382315040472764712 ~2016
7520570671160164565368912 ~2017
7520847205115041694410312 ~2016
7520919737915041839475912 ~2016
7521488317115042976634312 ~2016
7521720098315043440196712 ~2016
7521785657915043571315912 ~2016
7523383021115046766042312 ~2016
7523499335960187994687312 ~2017
7523648341115047296682312 ~2016
7523670193115047340386312 ~2016
Exponent Prime Factor Dig. Year
7523678225915047356451912 ~2016
7524076604315048153208712 ~2016
7524435572315048871144712 ~2016
7524710204315049420408712 ~2016
7525213231115050426462312 ~2016
7525218152315050436304712 ~2016
7525524721115051049442312 ~2016
7525658876315051317752712 ~2016
7525759460315051518920712 ~2016
7526015816315052031632712 ~2016
7526639146760213113173712 ~2017
7526686340315053372680712 ~2016
7527196772315054393544712 ~2016
7527219359915054438719912 ~2016
7527738536315055477072712 ~2016
7527822116315055644232712 ~2016
7527996523115055993046312 ~2016
7527999410315055998820712 ~2016
7529046681745174280090312 ~2017
7529114159915058228319912 ~2016
7529669461115059338922312 ~2016
7529692819115059385638312 ~2016
7530437881345182627287912 ~2017
7530519675175305196751112 ~2018
7531070461115062140922312 ~2016
Home
4.724.182 digits
e-mail
25-04-13