Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
402202286638044045732711 ~2014
402209172838044183456711 ~2014
4022109286732176874293712 ~2015
402249643798044992875911 ~2014
402273283318045465666311 ~2014
402283142398045662847911 ~2014
402289467598045789351911 ~2014
402301412998046028259911 ~2014
402308535118046170702311 ~2014
4023390155324140340931912 ~2015
4023419005724140514034312 ~2015
4023522663764376362619312 ~2016
402365244238047304884711 ~2014
4023786679132190293432912 ~2015
402406023598048120471911 ~2014
4024360785724146164714312 ~2015
402436572718048731454311 ~2014
402449552518048991050311 ~2014
4024795543724148773262312 ~2015
4024851949972447335098312 ~2016
402500658118050013162311 ~2014
402516458518050329170311 ~2014
402584737918051694758311 ~2014
402591559918051831198311 ~2014
402600042598052000851911 ~2014
Exponent Prime Factor Dig. Year
402616219198052324383911 ~2014
402637126918052742538311 ~2014
402648572038052971440711 ~2014
4027046677724162280066312 ~2015
402715912318054318246311 ~2014
402727369798054547395911 ~2014
402728792038054575840711 ~2014
4027460247724164761486312 ~2015
402791363518055827270311 ~2014
4028145487724168872926312 ~2015
402826614118056532282311 ~2014
402835728598056714571911 ~2014
4028560396132228483168912 ~2015
4028576965132228615720912 ~2015
4028611105132228888840912 ~2015
402868793518057375870311 ~2014
4029052034932232416279312 ~2015
402917580118058351602311 ~2014
4029242628124175455768712 ~2015
4029465700340294657003112 ~2016
4029557155324177342931912 ~2015
4029790807132238326456912 ~2015
402992505838059850116711 ~2014
403013145838060262916711 ~2014
403046866198060937323911 ~2014
Exponent Prime Factor Dig. Year
4030489815724182938894312 ~2015
403053042238061060844711 ~2014
403095610318061912206311 ~2014
403158464638063169292711 ~2014
403217329438064346588711 ~2014
4032236785972580262146312 ~2016
403231632718064632654311 ~2014
403244032191943...35155914 2023
403244380198064887603911 ~2014
403250261398065005227911 ~2014
403261788838065235776711 ~2014
403299221638065984432711 ~2014
4033114398124198686388712 ~2015
403324546198066490923911 ~2014
4033451089756468315255912 ~2016
403358504638067170092711 ~2014
4033594120732268752965712 ~2015
403376767198067535343911 ~2014
4033881917324203291503912 ~2015
403431030718068620614311 ~2014
403449969598068999391911 ~2014
403467665638069353312711 ~2014
4034699539732277596317712 ~2015
403499540038069990800711 ~2014
4035057412340350574123112 ~2016
Exponent Prime Factor Dig. Year
403517854318070357086311 ~2014
403530884398070617687911 ~2014
403547520718070950414311 ~2014
4035498523324212991139912 ~2015
403594445398071888907911 ~2014
403618612318072372246311 ~2014
4036241812132289934496912 ~2015
403635775918072715518311 ~2014
403695224638073904492711 ~2014
4036953012124221718072712 ~2015
403714086598074281731911 ~2014
403736930518074738610311 ~2014
403757898598075157971911 ~2014
403767623518075352470311 ~2014
403777602598075552051911 ~2014
403797680038075953600711 ~2014
403815639838076312796711 ~2014
4038261219140382612191112 ~2016
4038594955724231569734312 ~2015
403862030038077240600711 ~2014
403863195118077263902311 ~2014
403924459798078489195911 ~2014
403946919598078938391911 ~2014
4039479136132315833088912 ~2015
4039549102132316392816912 ~2015
Home
4.888.230 digits
e-mail
25-06-29