Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5492675237910985350475912 ~2015
5493203209110986406418312 ~2015
5493461978310986923956712 ~2015
5493683366310987366732712 ~2015
5493844556310987689112712 ~2015
5493884204310987768408712 ~2015
5494033609332964201655912 ~2016
5494346678943954773431312 ~2016
5494671439110989342878312 ~2015
549527460532945...88440914 2023
5495959165110991918330312 ~2015
5495961266310991922532712 ~2015
5496104243910992208487912 ~2015
5496143446132976860676712 ~2016
5496675893910993351787912 ~2015
5496756293910993512587912 ~2015
5497164961776960309463912 ~2017
5497753781910995507563912 ~2015
5497926376132987558256712 ~2016
5498197879743985583037712 ~2016
5498712731910997425463912 ~2015
5499302719110998605438312 ~2015
5499916655910999833311912 ~2015
5500389376744003115013712 ~2016
5500448896744003591173712 ~2016
Exponent Prime Factor Dig. Year
5500645897111001291794312 ~2015
5501047459111002094918312 ~2015
5501504351911003008703912 ~2015
5502025979911004051959912 ~2015
5502268118311004536236712 ~2015
5502683011333016098067912 ~2016
5502947113111005894226312 ~2015
5503095679111006191358312 ~2015
5503180676944025445415312 ~2016
5503268851777045763923912 ~2017
5503488044311006976088712 ~2015
5503510139944028081119312 ~2016
5503625801911007251603912 ~2015
5503693644133022161864712 ~2016
5503814425111007628850312 ~2015
5503832729911007665459912 ~2015
5503904996311007809992712 ~2015
5503983728311007967456712 ~2015
5504227525111008455050312 ~2015
5504555072311009110144712 ~2015
5504820853111009641706312 ~2015
5504959579111009919158312 ~2015
5505339442744042715541712 ~2016
5505683044144045464352912 ~2016
5505721061911011442123912 ~2015
Exponent Prime Factor Dig. Year
5505888179333035329075912 ~2016
5506155860311012311720712 ~2015
5506416973744051335789712 ~2016
5506786469911013572939912 ~2015
5506853659111013707318312 ~2015
5507070412133042422472712 ~2016
5507209934944057679479312 ~2016
5507837435911015674871912 ~2015
5508051199111016102398312 ~2015
5508064460311016128920712 ~2015
5508070976311016141952712 ~2015
5508077935733048467614312 ~2016
5508514439911017028879912 ~2015
5508668845111017337690312 ~2015
5508686213911017372427912 ~2015
5508757160311017514320712 ~2015
5509272937111018545874312 ~2015
5509346143111018692286312 ~2015
5509387393111018774786312 ~2015
5509978411111019956822312 ~2015
5510088337111020176674312 ~2015
5510265961733061595770312 ~2016
5511268850311022537700712 ~2015
5511404707111022809414312 ~2015
5511616403911023232807912 ~2015
Exponent Prime Factor Dig. Year
5512276567111024553134312 ~2015
5512317949111024635898312 ~2015
5512396991911024793983912 ~2015
5512415497111024830994312 ~2015
5512614425911025228851912 ~2015
5512711121911025422243912 ~2015
5513136966133078821796712 ~2016
5513332165111026664330312 ~2015
5513569013911027138027912 ~2015
5513785381111027570762312 ~2015
5514213901111028427802312 ~2015
5514326509111028653018312 ~2015
5514625745911029251491912 ~2015
5514694413733088166482312 ~2016
5514975019111029950038312 ~2015
5515001413111030002826312 ~2015
5515020638311030041276712 ~2015
5515097195911030194391912 ~2015
5516206811911032413623912 ~2015
5516403325111032806650312 ~2015
5516406506311032813012712 ~2015
5516960675911033921351912 ~2015
5517002249911034004499912 ~2015
5517018367111034036734312 ~2015
5517230757733103384546312 ~2016
Home
4.724.182 digits
e-mail
25-04-13