Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1755216663710531299982312 ~2012
175530304313510606086311 ~2011
175541240393510824807911 ~2011
175546982633510939652711 ~2011
175562371313511247426311 ~2011
1755636222110533817332712 ~2012
175565195033511303900711 ~2011
175568163233511363264711 ~2011
1755763388924580687444712 ~2013
175577132633511542652711 ~2011
175578664793511573295911 ~2011
1756087049310536522295912 ~2012
1756104064110536624384712 ~2012
175616175713512323514311 ~2011
175616281313512325626311 ~2011
1756204981114049639848912 ~2013
175626910313512538206311 ~2011
175627570313512551406311 ~2011
1756292345324588092834312 ~2013
175631755793512635115911 ~2011
1756320742114050565936912 ~2013
175632512393512650247911 ~2011
1756360135310538160811912 ~2012
175640404793512808095911 ~2011
175647003713512940074311 ~2011
Exponent Prime Factor Dig. Year
175651921193513038423911 ~2011
175666529033513330580711 ~2011
175670519513513410390311 ~2011
175682758313513655166311 ~2011
1756845433310541072599912 ~2012
1756891387724596479427912 ~2013
1756912183114055297464912 ~2013
1756922788714055382309712 ~2013
175694000033513880000711 ~2011
175721082713514421654311 ~2011
1757315596114058524768912 ~2013
175739514713514790294311 ~2011
175746438113514928762311 ~2011
1757600899714060807197712 ~2013
175763077193515261543911 ~2011
175768170593515363411911 ~2011
1757707661310546245967912 ~2012
175775265113515505302311 ~2011
175776146513515522930311 ~2011
175783733993515674679911 ~2011
1757910891710547465350312 ~2012
175795285913515905718311 ~2011
175796606393515932127911 ~2011
175798322393515966447911 ~2011
175801923233516038464711 ~2011
Exponent Prime Factor Dig. Year
175802493713516049874311 ~2011
1758038878114064311024912 ~2013
175806908393516138167911 ~2011
175812116393516242327911 ~2011
175812182993516243659911 ~2011
175813096313516261926311 ~2011
175821688193516433763911 ~2011
1758389076110550334456712 ~2012
175842462713516849254311 ~2011
1758499247324618989462312 ~2013
1758817114110552902684712 ~2012
1758937685310553626111912 ~2012
175899566473489...98764914 2023
1759092082114072736656912 ~2013
175921051193518421023911 ~2011
1759230624110555383744712 ~2012
1759322543956298321404912 ~2014
1759355873310556135239912 ~2012
175936363313518727266311 ~2011
175949325713518986514311 ~2011
1759617655742230823736912 ~2014
1759707467356310638953712 ~2014
175976571233519531424711 ~2011
175982646113519652922311 ~2011
175990468193519809363911 ~2011
Exponent Prime Factor Dig. Year
175990994033519819880711 ~2011
1759990018114079920144912 ~2013
1760098927714080791421712 ~2013
176015366513520307330311 ~2011
176018372513520367450311 ~2011
176033303513520666070311 ~2011
176040261233520805224711 ~2011
1760424366717604243667112 ~2013
176044853993520897079911 ~2011
176055333713521106674311 ~2011
176058336593521166731911 ~2011
1760634013114085072104912 ~2013
176066833313521336666311 ~2011
176076696713521533934311 ~2011
176083824713521676494311 ~2011
176085229313521704586311 ~2011
176086518713521730374311 ~2011
176086999313521739986311 ~2011
176091295913521825918311 ~2011
176113086233522261724711 ~2011
176114684033522293680711 ~2011
176114690033522293800711 ~2011
176121633113522432662311 ~2011
1761336121710568016730312 ~2012
176134319393522686387911 ~2011
Home
5.157.210 digits
e-mail
25-11-02