Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7225861069114451722138312 ~2016
7225993291114451986582312 ~2016
7227165017914454330035912 ~2016
7227222644314454445288712 ~2016
722755493632095...31527114 2023
7227953459914455906919912 ~2016
7228880953114457761906312 ~2016
7229327792314458655584712 ~2016
7229369854157834958832912 ~2017
7229475226757835801813712 ~2017
7229518303343377109819912 ~2017
7229568587343377411523912 ~2017
7229580085114459160170312 ~2016
7229586764314459173528712 ~2016
7230056165914460112331912 ~2016
7230552145114461104290312 ~2016
7230677419114461354838312 ~2016
7230696137914461392275912 ~2016
7230903032314461806064712 ~2016
7230973718314461947436712 ~2016
723149441333581...34661715 2023
7231656047914463312095912 ~2016
7232201617114464403234312 ~2016
7232309612314464619224712 ~2016
7232370734314464741468712 ~2016
Exponent Prime Factor Dig. Year
7232482626143394895756712 ~2017
7232675371343396052227912 ~2017
7232883216143397299296712 ~2017
7232892575914465785151912 ~2016
7233199808314466399616712 ~2016
7233695360314467390720712 ~2016
7233732283114467464566312 ~2016
7233825607114467651214312 ~2016
7233860995114467721990312 ~2016
7233963013114467926026312 ~2016
7234281355114468562710312 ~2016
7234691927914469383855912 ~2016
7235571589114471143178312 ~2016
7235691247114471382494312 ~2016
7236393157114472786314312 ~2016
7236400561114472801122312 ~2016
7236452683114472905366312 ~2016
7236703103914473406207912 ~2016
7236819062314473638124712 ~2016
7237097575114474195150312 ~2016
7237244060314474488120712 ~2016
7237326581914474653163912 ~2016
7237931461157903451688912 ~2017
7238097860957904782887312 ~2017
7238307587914476615175912 ~2016
Exponent Prime Factor Dig. Year
7238912059114477824118312 ~2016
7239210884314478421768712 ~2016
7239458257343436749543912 ~2017
7239501578314479003156712 ~2016
7239609456772396094567112 ~2018
7240181699914480363399912 ~2016
7240398016757923184133712 ~2017
7240569331743443415990312 ~2017
7240706090314481412180712 ~2016
7241729393914483458787912 ~2016
7243299517114486599034312 ~2016
7243615205914487230411912 ~2016
7244024657914488049315912 ~2016
7244241842314488483684712 ~2016
7244603465914489206931912 ~2016
7244614724314489229448712 ~2016
7244689343343468136059912 ~2017
7245760595914491521191912 ~2016
7246330921114492661842312 ~2016
7247597755114495195510312 ~2016
7247864455157982915640912 ~2017
7248266427743489598566312 ~2017
7249931479114499862958312 ~2016
7250001445114500002890312 ~2016
7250233807114500467614312 ~2016
Exponent Prime Factor Dig. Year
7250347397914500694795912 ~2016
7251034997914502069995912 ~2016
7251385769343508314615912 ~2017
7251823717343510942303912 ~2017
7252324104772523241047112 ~2018
7252565584158020524672912 ~2017
7252850307743517101846312 ~2017
7253472745114506945490312 ~2016
7253482358314506964716712 ~2016
7255305863914510611727912 ~2016
7255309303114510618606312 ~2016
7255350127114510700254312 ~2016
7255429572143532577432712 ~2017
7255816831114511633662312 ~2016
7255873424314511746848712 ~2016
7256087030314512174060712 ~2016
7256401741114512803482312 ~2016
7256586649758052693197712 ~2017
7256669035114513338070312 ~2016
7256755868314513511736712 ~2016
7257234625114514469250312 ~2016
7257695324314515390648712 ~2016
7257774794314515549588712 ~2016
7258024543343548147259912 ~2017
7258346039914516692079912 ~2016
Home
4.724.182 digits
e-mail
25-04-13