Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
173696944313473938886311 ~2011
1737020899713896167197712 ~2012
173706723833474134476711 ~2011
173725796993474515939911 ~2011
173736388793474727775911 ~2011
1737375639710424253838312 ~2012
173739875633474797512711 ~2011
173740685993474813719911 ~2011
1737443661710424661970312 ~2012
1737452027913899616223312 ~2012
1737489689913899917519312 ~2012
1737589990952127699727112 ~2014
173759651633475193032711 ~2011
1738061075913904488607312 ~2012
1738128557324333799802312 ~2013
1738219495310429316971912 ~2012
173825192393476503847911 ~2011
173836880393476737607911 ~2011
173837073713476741474311 ~2011
173841158033476823160711 ~2011
173842842713476856854311 ~2011
173856656393477133127911 ~2011
173867368913477347378311 ~2011
173868599993477371999911 ~2011
1738704339127819269425712 ~2013
Exponent Prime Factor Dig. Year
173872935593477458711911 ~2011
1738750310924342504352712 ~2013
173875223033477504460711 ~2011
1738852203710433113222312 ~2012
173893825793477876515911 ~2011
173899957193477999143911 ~2011
1739068671131303236079912 ~2013
173909257913478185158311 ~2011
173915878913478317578311 ~2011
1739188999352175669979112 ~2014
173923751513478475030311 ~2011
173937349313478746986311 ~2011
173937469433478749388711 ~2011
173937620033478752400711 ~2011
173948759513478975190311 ~2011
173955373913479107478311 ~2011
173957430833479148616711 ~2011
1739576239917395762399112 ~2013
1739619742113916957936912 ~2012
173991827993479836559911 ~2011
174004288793480085775911 ~2011
1740066735710440400414312 ~2012
174007825193480156503911 ~2011
174010073033480201460711 ~2011
174010282793480205655911 ~2011
Exponent Prime Factor Dig. Year
174014592593480291851911 ~2011
174014760833480295216711 ~2011
174016441193480328823911 ~2011
174016931393480338627911 ~2011
174023510513480470210311 ~2011
1740276436317402764363112 ~2013
1740285069127844561105712 ~2013
174029146193480582923911 ~2011
174032981633480659632711 ~2011
174040309913480806198311 ~2011
174046994393480939887911 ~2011
174051184912186...82469714 2023
174052912193481058243911 ~2011
174057106913481142138311 ~2011
1740589033113924712264912 ~2012
174061656593481233131911 ~2011
1740626399310443758395912 ~2012
174065932193481318643911 ~2011
1740693676110444162056712 ~2012
174081318833481626376711 ~2011
1741060612713928484901712 ~2012
1741099090113928792720912 ~2012
174112335713482246714311 ~2011
174114123113482282462311 ~2011
174118585313482371706311 ~2011
Exponent Prime Factor Dig. Year
174121227713482424554311 ~2011
1741349493710448096962312 ~2012
174146972033482939440711 ~2011
1741487641113931901128912 ~2012
174149909033482998180711 ~2011
174154033193483080663911 ~2011
174158127593483162551911 ~2011
1741655359917416553599112 ~2013
174171063593483421271911 ~2011
174171583313483431666311 ~2011
174203862113484077242311 ~2011
174224536793484490735911 ~2011
174226908233484538164711 ~2011
174226963913484539278311 ~2011
174231090233484621804711 ~2011
1742318390941815641381712 ~2014
1742463294731364339304712 ~2013
174269235833485384716711 ~2011
174272952833485459056711 ~2011
1742730650345310996907912 ~2014
1742754462110456526772712 ~2012
174286241513485724830311 ~2011
174294912233485898244711 ~2011
174301024793486020495911 ~2011
1743046117710458276706312 ~2012
Home
5.157.210 digits
e-mail
25-11-02