Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
363401221917268024438311 ~2013
3634073616736340736167112 ~2015
363447377037268947540711 ~2013
3634533791321807202747912 ~2015
363468577317269371546311 ~2013
363486039117269720782311 ~2013
363506276397270125527911 ~2013
363506832237270136644711 ~2013
3635204509721811227058312 ~2015
363526413597270528271911 ~2013
3635451604336354516043112 ~2015
363578450037271569000711 ~2013
3635932926121815597556712 ~2015
363594887997271897759911 ~2013
363605900997272118019911 ~2013
3636080740358177291844912 ~2016
3636974482121821846892712 ~2015
363740516637274810332711 ~2013
3637715335721826292014312 ~2015
363771759117275435182311 ~2013
363781074117275621482311 ~2013
363787248597275744971911 ~2013
363787766397275755327911 ~2013
363793057317275861146311 ~2013
363811798437276235968711 ~2013
Exponent Prime Factor Dig. Year
363820147437276402948711 ~2013
363837770637276755412711 ~2013
363885525237277710504711 ~2013
363904585437278091708711 ~2013
363955890117279117802311 ~2013
363960606117279212122311 ~2013
363979298637279585972711 ~2013
3639834825721839008954312 ~2015
3640342301350964792218312 ~2016
364038462117280769242311 ~2013
364054695597281093911911 ~2013
3641060239936410602399112 ~2015
364149293997282985879911 ~2013
364165375437283307508711 ~2013
364179610917283592218311 ~2013
364207698237284153964711 ~2013
364210385397284207707911 ~2013
364248174597284963491911 ~2013
364251716037285034320711 ~2013
364292381517285847630311 ~2013
3643050736121858304416712 ~2015
364309208037286184160711 ~2013
364310841717286216834311 ~2013
3643265251729146122013712 ~2015
364352398917287047978311 ~2013
Exponent Prime Factor Dig. Year
364360073397287201467911 ~2013
3643642714121861856284712 ~2015
364367831997287356639911 ~2013
364371783597287435671911 ~2013
364372727997287454559911 ~2013
364372732917287454658311 ~2013
364404699597288093991911 ~2013
364413469437288269388711 ~2013
364414431837288288636711 ~2013
3644235961721865415770312 ~2015
3644257333358308117332912 ~2016
3644366717929154933743312 ~2015
364443369837288867396711 ~2013
3644606827129156854616912 ~2015
364461215397289224307911 ~2013
364467213237289344264711 ~2013
364489945317289798906311 ~2013
3644926282336449262823112 ~2015
364505537397290110747911 ~2013
3645119654929160957239312 ~2015
364518226917290364538311 ~2013
3645213853729161710829712 ~2015
3645403774336454037743112 ~2015
364582867495804...50440914 2025
3645992323129167938584912 ~2015
Exponent Prime Factor Dig. Year
3646185821929169486575312 ~2015
3646211950129169695600912 ~2015
3646313464980218896227912 ~2016
364633495197292669903911 ~2014
364745861397294917227911 ~2014
364804355997296087119911 ~2014
364804884837296097696711 ~2014
364806426837296128536711 ~2014
364808913717296178274311 ~2014
364824021237296480424711 ~2014
364829485317296589706311 ~2014
3648306007165669508127912 ~2016
364843711917296874238311 ~2014
364847213637296944272711 ~2014
364873812237297476244711 ~2014
364876170117297523402311 ~2014
364886322237297726444711 ~2014
364901591517298031830311 ~2014
3649115209936491152099112 ~2015
3649659377929197275023312 ~2015
364967411397299348227911 ~2014
364973925597299478511911 ~2014
364974212037299484240711 ~2014
364977816237299556324711 ~2014
3650119882121900719292712 ~2015
Home
4.888.230 digits
e-mail
25-06-29