Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
490171292639803425852711 ~2014
490208560919804171218311 ~2014
490209634439804192688711 ~2014
490220248199804404963911 ~2014
490243435919804868718311 ~2014
490257103799805142075911 ~2014
4902706698749027066987112 ~2016
490272143999805442879911 ~2014
4902832952968639661340712 ~2017
490321020719806420414311 ~2014
490325460719806509214311 ~2014
4903490932349034909323112 ~2016
490357466639807149332711 ~2014
490500116039810002320711 ~2014
4905076264739240610117712 ~2016
490511043839810220876711 ~2014
490532200919810644018311 ~2015
4905371362739242970901712 ~2016
490545353999810907079911 ~2015
4905659753368679236546312 ~2017
4905733377729434400266312 ~2016
4905758145178492130321712 ~2017
490578826199811576523911 ~2015
4906290111729437740670312 ~2016
4906424624939251396999312 ~2016
Exponent Prime Factor Dig. Year
490652335439813046708711 ~2015
4906800085329440800511912 ~2016
490731402119814628042311 ~2015
490740165599814803311911 ~2015
490743082439814861648711 ~2015
490748118112179...06446315 2023
490763189399815263787911 ~2015
490800088919816001778311 ~2015
4908410802749084108027112 ~2016
490897739519817954790311 ~2015
490910398192474...06877714 2025
490922241839818444836711 ~2015
4909426021768731964303912 ~2017
4909797853378556765652912 ~2017
490989507599819790151911 ~2015
490993745039819874900711 ~2015
491019344999820386899911 ~2015
4910309289729461855738312 ~2016
491044776599820895531911 ~2015
491051788199821035763911 ~2015
4910624179139284993432912 ~2016
4910947480129465684880712 ~2016
491095065719821901314311 ~2015
491118230039822364600711 ~2015
491118573839822371476711 ~2015
Exponent Prime Factor Dig. Year
4912007131139296057048912 ~2016
491206984799824139695911 ~2015
491247598199824951963911 ~2015
491265382319825307646311 ~2015
491274868799825497375911 ~2015
491293389839825867796711 ~2015
491316376799826327535911 ~2015
491326473839826529476711 ~2015
491331407399826628147911 ~2015
491336444039826728880711 ~2015
491364869399827297387911 ~2015
491376915239827538304711 ~2015
491377612439827552248711 ~2015
4913936275729483617654312 ~2016
4913942814129483656884712 ~2016
491452078799829041575911 ~2015
491458018199829160363911 ~2015
491477734439829554688711 ~2015
491482227239829644544711 ~2015
491501901239830038024711 ~2015
491571026399831420527911 ~2015
491577488519831549770311 ~2015
491606951639832139032711 ~2015
4916098842178657581473712 ~2017
4916188897739329511181712 ~2016
Exponent Prime Factor Dig. Year
4916352177729498113066312 ~2016
491663254439833265088711 ~2015
4916854867739334838941712 ~2016
4916952869329501717215912 ~2016
491721227999834424559911 ~2015
491755833239835116664711 ~2015
4918088466129508530796712 ~2016
491850183599837003671911 ~2015
4918529764349185297643112 ~2016
491854355039837087100711 ~2015
4918595621368860338698312 ~2017
4918750413729512502482312 ~2016
4918959700739351677605712 ~2016
491938589519838771790311 ~2015
4919427372129516564232712 ~2016
491943928573414...64275914 2024
491962973039839259460711 ~2015
491997939119839958782311 ~2015
4920517600129523105600712 ~2016
492073532639841470652711 ~2015
4920754078378732065252912 ~2017
4921704877949217048779112 ~2016
492173626799843472535911 ~2015
492181894799843637895911 ~2015
492191416191535...18512914 2023
Home
4.724.182 digits
e-mail
25-04-13