Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6035088427736210530566312 ~2016
6035092897112070185794312 ~2015
6035206885112070413770312 ~2015
6035686631912071373263912 ~2015
6035763178748286105429712 ~2017
6035792405912071584811912 ~2015
6035857512760358575127112 ~2017
6036454549112072909098312 ~2015
6036683245112073366490312 ~2015
6036815845112073631690312 ~2015
6037154869112074309738312 ~2015
6037413535112074827070312 ~2015
6037854586360378545863112 ~2017
6037895773112075791546312 ~2015
6038358163112076716326312 ~2015
6038895143336233370859912 ~2016
6039004298312078008596712 ~2015
6039172631912078345263912 ~2015
6039342944312078685888712 ~2015
6040695925112081391850312 ~2015
6040749673112081499346312 ~2015
6040945009112081890018312 ~2015
6040969796312081939592712 ~2015
6041276665112082553330312 ~2015
6041333372312082666744712 ~2015
Exponent Prime Factor Dig. Year
6041454590312082909180712 ~2015
6041904707912083809415912 ~2015
6042271859912084543719912 ~2015
6042511469912085022939912 ~2015
6042603275912085206551912 ~2015
6043000099336258000595912 ~2016
6043555964312087111928712 ~2015
6044107567112088215134312 ~2015
6044186555912088373111912 ~2015
6044335670312088671340712 ~2015
6044619321736267715930312 ~2016
6045023651336270141907912 ~2016
6045481408136272888448712 ~2016
6045627086948365016695312 ~2017
6046175000312092350000712 ~2015
6046189073912092378147912 ~2015
6046310231912092620463912 ~2015
6046516343912093032687912 ~2015
6046797935912093595871912 ~2015
6046908681736281452090312 ~2016
6047261316136283567896712 ~2016
6047334050312094668100712 ~2015
6047758753112095517506312 ~2015
6047836159112095672318312 ~2015
6048102944312096205888712 ~2015
Exponent Prime Factor Dig. Year
6048381479912096762959912 ~2015
6048588413912097176827912 ~2015
6048753865112097507730312 ~2015
6048913907912097827815912 ~2015
6049030825112098061650312 ~2015
6049200289112098400578312 ~2015
6049601495912099202991912 ~2015
6049672265912099344531912 ~2015
6049874651912099749303912 ~2015
6050076131912100152263912 ~2015
6050894345912101788691912 ~2015
6051064201112102128402312 ~2015
6051892619912103785239912 ~2015
6052058462312104116924712 ~2015
6052589671960525896719112 ~2017
6053181006136319086036712 ~2016
6053204279912106408559912 ~2015
6053353979912106707959912 ~2015
6053561254136321367524712 ~2016
6053623730948428989847312 ~2017
6054566096312109132192712 ~2015
6054913739912109827479912 ~2015
6055036219336330217315912 ~2016
6055122131948440977055312 ~2017
6055280449112110560898312 ~2015
Exponent Prime Factor Dig. Year
6055560055736333360334312 ~2016
6055590350312111180700712 ~2015
6055702105112111404210312 ~2015
6055813324360558133243112 ~2017
6056019977336336119863912 ~2016
6056201636312112403272712 ~2015
6056380897112112761794312 ~2015
6057049387736342296326312 ~2016
6057063215912114126431912 ~2015
6057151819112114303638312 ~2015
6057345605912114691211912 ~2015
6057361965736344171794312 ~2016
6057728641736346371850312 ~2016
6057831348760578313487112 ~2017
6057896383112115792766312 ~2015
6058021361912116042723912 ~2015
6058077657736348465946312 ~2016
6058330763912116661527912 ~2015
6058582064312117164128712 ~2015
6059095940948472767527312 ~2017
6059096551112118193102312 ~2015
6059244368312118488736712 ~2015
6059525973736357155842312 ~2016
6059550989336357305935912 ~2016
6060191705912120383411912 ~2015
Home
4.724.182 digits
e-mail
25-04-13