Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
408563183518171263670311 ~2014
4085690914732685527317712 ~2015
4085703102124514218612712 ~2015
408597393838171947876711 ~2014
4085985307173547735527912 ~2016
408604356598172087131911 ~2014
4086249177765379986843312 ~2016
408627931438172558628711 ~2014
4086418377724518510266312 ~2015
408643207438172864148711 ~2014
408650691598173013831911 ~2014
408654366598173087331911 ~2014
408706543438174130868711 ~2014
408730698238174613964711 ~2014
4087547438957225664144712 ~2016
408770713318175414266311 ~2014
408796287118175925742311 ~2014
408801277198176025543911 ~2014
408830083438176601668711 ~2014
408840617638176812352711 ~2014
408857191094876...10491918 2025
4088693680732709549445712 ~2015
408923483038178469660711 ~2014
408929305798178586115911 ~2014
408941587438178831748711 ~2014
Exponent Prime Factor Dig. Year
408945006238178900124711 ~2014
408952683118179053662311 ~2014
408965891998179317839911 ~2014
408978488991100...53831115 2025
408986674798179733495911 ~2014
408991232038179824640711 ~2014
409002487318180049746311 ~2014
409003393918180067878311 ~2014
409014508198180290163911 ~2014
4090201081732721608653712 ~2015
409022361598180447231911 ~2014
409031380198180627603911 ~2014
409057511638181150232711 ~2014
4090903029724545418178312 ~2015
409096719838181934396711 ~2014
409102586638182051732711 ~2014
409104754918182095098311 ~2014
4091332121324547992727912 ~2015
409156881471378...67909715 2025
409196623918183932478311 ~2014
409223551918184471038311 ~2014
409224226318184484526311 ~2014
409339833238186796664711 ~2014
4093408449765494535195312 ~2016
409422735838188454716711 ~2014
Exponent Prime Factor Dig. Year
409433761198188675223911 ~2014
4094408604765510537675312 ~2016
409446825118188936502311 ~2014
409455531238189110624711 ~2014
409456343998189126879911 ~2014
409476087118189521742311 ~2014
4094786596340947865963112 ~2016
409507755718190155114311 ~2014
4095152069932761216559312 ~2015
409539868318190797366311 ~2014
4095542167732764337341712 ~2015
409562228998191244579911 ~2014
409574356198191487123911 ~2014
409581215638191624312711 ~2014
409600796038192015920711 ~2014
409620510838192410216711 ~2014
409658683438193173668711 ~2014
4096763827724580582966312 ~2015
4096846998165549551969712 ~2016
409686544318193730886311 ~2014
4096878781365550060500912 ~2016
409689247918193784958311 ~2014
4097362125140973621251112 ~2016
409753185118195063702311 ~2014
409756210918195124218311 ~2014
Exponent Prime Factor Dig. Year
409765403038195308060711 ~2014
409801450918196029018311 ~2014
409831353838196627076711 ~2014
409848976198196979523911 ~2014
409849289038196985780711 ~2014
409850986318197019726311 ~2014
4098562125140985621251112 ~2016
409863597238197271944711 ~2014
409902864838198057296711 ~2014
409906566118198131322311 ~2014
409909344238198186884711 ~2014
409922438638198448772711 ~2014
409935091318198701826311 ~2014
4099602029324597612175912 ~2015
409996721638199934432711 ~2014
410000709598200014191911 ~2014
410030475238200609504711 ~2014
410047805398200956107911 ~2014
4100633911724603803470312 ~2015
4100643723724603862342312 ~2015
4101336868732810694949712 ~2015
410148593518202971870311 ~2014
4101585194932812681559312 ~2015
410162355838203247116711 ~2014
410166439318203328786311 ~2014
Home
4.724.182 digits
e-mail
25-04-13