Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
299668360132487...89079114 2023
299670246235993404924711 ~2013
299672777515993455550311 ~2013
299687707195993754143911 ~2013
299703831715994076634311 ~2013
2997126091123977008728912 ~2014
299731802035994636040711 ~2013
299739738715994794774311 ~2013
2997489174753954805144712 ~2015
2997517674117985106044712 ~2014
299753240515995064810311 ~2013
299756125315995122506311 ~2013
299758502635995170052711 ~2013
299774782915995495658311 ~2013
2997957820117987746920712 ~2014
299815402795996308055911 ~2013
299818921915996378438311 ~2013
2998273561717989641370312 ~2014
2998407469123987259752912 ~2014
2998550308117991301848712 ~2014
2998699565317992197391912 ~2014
2998711627717992269766312 ~2014
2998738958971969735013712 ~2015
2998805834371971340023312 ~2015
299932225435998644508711 ~2013
Exponent Prime Factor Dig. Year
299938797115998775942311 ~2013
299944105315998882106311 ~2013
299949178315998983566311 ~2013
299951173315999023466311 ~2013
299975358115999507162311 ~2013
299988764995999775299911 ~2013
3000066607930000666079112 ~2015
300029648516000592970311 ~2013
300052163996001043279911 ~2013
300065170436001303408711 ~2013
3000956299124007650392912 ~2014
300110053316002201066311 ~2013
300114968036002299360711 ~2013
3001244906924009959255312 ~2014
300166426196003328523911 ~2013
300178386596003567731911 ~2013
300193170716003863414311 ~2013
300206848916004136978311 ~2013
300209503316004190066311 ~2013
300213432116004268642311 ~2013
300222072236004441444711 ~2013
300224767796004495355911 ~2013
300225103796004502075911 ~2013
300229897196004597943911 ~2013
3002422902118014537412712 ~2014
Exponent Prime Factor Dig. Year
300258070436005161408711 ~2013
300258968396005179367911 ~2013
300273908036005478160711 ~2013
300304274396006085487911 ~2013
300317743436006354868711 ~2013
300322268636006445372711 ~2013
300344577596006891551911 ~2013
300359047796007180955911 ~2013
3003763399318022580395912 ~2014
300388674836007773496711 ~2013
300389885036007797700711 ~2013
300398859836007977196711 ~2013
300400124516008002490311 ~2013
300410622116008212442311 ~2013
3004207762118025246572712 ~2014
300425998316008519966311 ~2013
300433980236008679604711 ~2013
300442663316008853266311 ~2013
300454826996009096539911 ~2013
300474358436009487168711 ~2013
3004806187724038449501712 ~2014
300486681836009733636711 ~2013
3004904241130049042411112 ~2015
3004943266330049432663112 ~2015
300499188596009983771911 ~2013
Exponent Prime Factor Dig. Year
300518768396010375367911 ~2013
3005206776148083308417712 ~2015
3005425114118032550684712 ~2014
3005440239718032641438312 ~2014
300551197196011023943911 ~2013
300564316316011286326311 ~2013
300565601396011312027911 ~2013
300567147116011342942311 ~2013
300605913716012118274311 ~2013
3006107221124048857768912 ~2014
300631329716012626594311 ~2013
3006403753318038422519912 ~2014
3006582673724052661389712 ~2014
300665485917793...94787314 2024
300669321236013386424711 ~2013
300679396196013587923911 ~2013
300714042716014280854311 ~2013
300736822796014736455911 ~2013
300739388036014787760711 ~2013
300753338036015066760711 ~2013
300760310934228...71675914 2023
3007902459718047414758312 ~2014
300791614492382...86760914 2024
300803969036016079380711 ~2013
300806001836016120036711 ~2013
Home
4.888.230 digits
e-mail
25-06-29