Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5921220143911842440287912 ~2015
5921371391335528228347912 ~2016
5921760212311843520424712 ~2015
5922194089111844388178312 ~2015
5922287180311844574360712 ~2015
5922301793911844603587912 ~2015
5922470452135534822712712 ~2016
5922521633911845043267912 ~2015
5922536773147380294184912 ~2017
5922584407111845168814312 ~2015
5922648539911845297079912 ~2015
5922782839747382262717712 ~2017
5922917897911845835795912 ~2015
5923002029911846004059912 ~2015
592357770674371...47544714 2023
592388340232384...77659915 2023
5924106632311848213264712 ~2015
5924136170311848272340712 ~2015
5924453558311848907116712 ~2015
5924533698135547202188712 ~2016
5925050161735550300970312 ~2016
5925070745911850141491912 ~2015
5925578681911851157363912 ~2015
5926438325911852876651912 ~2015
5926492538311852985076712 ~2015
Exponent Prime Factor Dig. Year
5926652773111853305546312 ~2015
5927264017147418112136912 ~2017
5927484383335564906299912 ~2016
592753672312525...44040714 2024
5927883362311855766724712 ~2015
5928197849911856395699912 ~2015
5928555056311857110112712 ~2015
5928595634311857191268712 ~2015
5928707191111857414382312 ~2015
5928865254135573191524712 ~2016
5929142857111858285714312 ~2015
5929660418311859320836712 ~2015
5930284121911860568243912 ~2015
5930469252759304692527112 ~2017
5930566829335583400975912 ~2016
5930638690135583832140712 ~2016
5930710867111861421734312 ~2015
5930748109111861496218312 ~2015
5930998526311861997052712 ~2015
5931194306311862388612712 ~2015
5931545324311863090648712 ~2015
5931971413111863942826312 ~2015
5932336381111864672762312 ~2015
5932520105911865040211912 ~2015
5932630439911865260879912 ~2015
Exponent Prime Factor Dig. Year
5933057609911866115219912 ~2015
5933520276135601121656712 ~2016
5933833667911867667335912 ~2015
5934689584747477516677712 ~2017
5935390243111870780486312 ~2015
5935394139735612364838312 ~2016
5935513820311871027640712 ~2015
5935885664311871771328712 ~2015
5936136074311872272148712 ~2015
5936371859335618231155912 ~2016
5937038393911874076787912 ~2015
5937717572311875435144712 ~2015
5937740831911875481663912 ~2015
5938101605911876203211912 ~2015
5938172941111876345882312 ~2015
5938185029911876370059912 ~2015
5938738726135632432356712 ~2016
5938906033111877812066312 ~2015
5939292600135635755600712 ~2016
5939297557111878595114312 ~2015
5940607231111881214462312 ~2015
5940621776311881243552712 ~2015
5940905525911881811051912 ~2015
5941016515111882033030312 ~2015
5941168459735647010758312 ~2016
Exponent Prime Factor Dig. Year
5941291945111882583890312 ~2015
5941347319111882694638312 ~2015
5941575839335649455035912 ~2016
5941733713111883467426312 ~2015
5941876121911883752243912 ~2015
5942160613735652963682312 ~2016
5942572774135655436644712 ~2016
5942580200311885160400712 ~2015
5942935406311885870812712 ~2015
5942940284311885880568712 ~2015
5944177855111888355710312 ~2015
5944276361911888552723912 ~2015
5944520768311889041536712 ~2015
5945054453911890108907912 ~2015
5945112289111890224578312 ~2015
5945347304311890694608712 ~2015
5945486711335672920267912 ~2016
5945519267911891038535912 ~2015
594632934312140...63516114 2023
5946340478311892680956712 ~2015
5946444989911892889979912 ~2015
5947198333111894396666312 ~2015
5947205761111894411522312 ~2015
5947400527111894801054312 ~2015
5947443031111894886062312 ~2015
Home
4.724.182 digits
e-mail
25-04-13