Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
449965049998999300999911 ~2014
449965550998999311019911 ~2014
449980440118999608802311 ~2014
4499915992735999327941712 ~2016
4499932551726999595310312 ~2015
449995474198999909483911 ~2014
449998286518999965730311 ~2014
450030646799000612935911 ~2014
450035556719000711134311 ~2014
450101708519002034170311 ~2014
450102285839002045716711 ~2014
450111559799002231195911 ~2014
450114838799002296775911 ~2014
450115449839002308996711 ~2014
4501581421945015814219112 ~2016
450166301999003326039911 ~2014
4501727817727010366906312 ~2015
450199872239003997444711 ~2014
4502006542345020065423112 ~2016
450208310999004166219911 ~2014
4502224780736017798245712 ~2016
450228171599004563431911 ~2014
450236248199004724963911 ~2014
450236930519004738610311 ~2014
4502703276127016219656712 ~2015
Exponent Prime Factor Dig. Year
450323109599006462191911 ~2014
450377897639007557952711 ~2014
4503935500736031484005712 ~2016
450447272399008945447911 ~2014
450459850799009197015911 ~2014
4504801177327028807063912 ~2015
450484064999009681299911 ~2014
4504841300936038730407312 ~2016
4504852919327029117515912 ~2015
450500074199010001483911 ~2014
4505410864345054108643112 ~2016
4505658307327033949843912 ~2015
450592125719011842514311 ~2014
450613453799012269075911 ~2014
450638289839012765796711 ~2014
450649411919012988238311 ~2014
450657374399013147487911 ~2014
450657388439013147768711 ~2014
450700668839014013376711 ~2014
4507163235727042979414312 ~2015
450737652599014753051911 ~2014
450742408199014848163911 ~2014
4507919235727047515414312 ~2015
450818214239016364284711 ~2014
450842685719016853714311 ~2014
Exponent Prime Factor Dig. Year
450851559599017031191911 ~2014
450862166039017243320711 ~2014
4508978654963125701168712 ~2016
450919231799018384635911 ~2014
4509316362745093163627112 ~2016
4509381362936075050903312 ~2016
451031371199020627423911 ~2014
4510350861727062105170312 ~2015
4510404133727062424802312 ~2015
451054005839021080116711 ~2014
451058815199021176303911 ~2014
451062161399021243227911 ~2014
451092313199021846263911 ~2014
451093021319021860426311 ~2014
4511154394736089235157712 ~2016
451123431239022468624711 ~2014
4511249362372179989796912 ~2016
451130107799022602155911 ~2014
451135263239022705264711 ~2014
451148488199022969763911 ~2014
451163021399023260427911 ~2014
451169211599023384231911 ~2014
451171746719023434934311 ~2014
451171944599023438891911 ~2014
451180829693419...89050314 2023
Exponent Prime Factor Dig. Year
451209350039024187000711 ~2014
451252934039025058680711 ~2014
451272070439025441408711 ~2014
4512967507727077805046312 ~2015
451334645039026692900711 ~2014
4513463217727080779306312 ~2015
4513538329727081229978312 ~2015
451387805399027756107911 ~2014
451412003999028240079911 ~2014
4514216533727085299202312 ~2015
4514466707936115733663312 ~2016
451474357439029487148711 ~2014
451479379274189...39625714 2023
451496810399029936207911 ~2014
451499747999029994959911 ~2014
451505285931517...60724914 2024
451534099199030681983911 ~2014
451581422999031628459911 ~2014
451604567519032091350311 ~2014
451616708399032334167911 ~2014
4516346606936130772855312 ~2016
4516372352936130978823312 ~2016
451644723839032894476711 ~2014
451646449199032928983911 ~2014
451650060599033001211911 ~2014
Home
4.724.182 digits
e-mail
25-04-13