Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
375155169717503103394311 ~2014
375165333717503306674311 ~2014
375171608397503432167911 ~2014
375175199397503503987911 ~2014
3751957433322511744599912 ~2015
375198711717503974234311 ~2014
375202298637504045972711 ~2014
375217708797504354175911 ~2014
375233782797504675655911 ~2014
375257317317505146346311 ~2014
375272698917505453978311 ~2014
375279647397505592947911 ~2014
3752926738730023413909712 ~2015
375306402717506128054311 ~2014
3753122131130024977048912 ~2015
375315196437506303928711 ~2014
3753213646337532136463112 ~2015
375326323271711...34111314 2023
375347853117506957062311 ~2014
3753531586130028252688912 ~2015
375360197517507203950311 ~2014
375385233717507704674311 ~2014
375391474917507829498311 ~2014
375439466637508789332711 ~2014
3754496869360071949908912 ~2016
Exponent Prime Factor Dig. Year
3754580917722527485506312 ~2015
375469238397509384767911 ~2014
375474722997509494459911 ~2014
3755107075130040856600912 ~2015
3755201449722531208698312 ~2015
375522287397510445747911 ~2014
3755286970767595165472712 ~2016
375552277197511045543911 ~2014
375568292037511365840711 ~2014
375572469117511449382311 ~2014
375587452917511749058311 ~2014
375613134237512262684711 ~2014
375635909517512718190311 ~2014
375655457397513109147911 ~2014
375656445597513128911911 ~2014
375659411517513188230311 ~2014
375711180237514223604711 ~2014
375714769197514295383911 ~2014
375730468317514609366311 ~2014
375734534517514690690311 ~2014
375753616437515072328711 ~2014
3757747453322546484719912 ~2015
375789154437515783088711 ~2014
3758322793130066582344912 ~2015
375842119437516842388711 ~2014
Exponent Prime Factor Dig. Year
3758681911130069455288912 ~2015
375869623317517392466311 ~2014
375873710397517474207911 ~2014
3759016524122554099144712 ~2015
375906603117518132062311 ~2014
375913556997518271139911 ~2014
375942963597518859271911 ~2014
3759726209322558357255912 ~2015
3759827004122558962024712 ~2015
375999983997519999679911 ~2014
3760027472930080219783312 ~2015
3760271041322561626247912 ~2015
376048395237520967904711 ~2014
376054726317521094526311 ~2014
376081235831263...52388914 2023
3761122795722566736774312 ~2015
376112644797522252895911 ~2014
376142063517522841270311 ~2014
376156502517523130050311 ~2014
376185954717523719094311 ~2014
376186112692490...66007914 2023
376186340517523726810311 ~2014
376200969117524019382311 ~2014
376203879717524077594311 ~2014
376206874317524137486311 ~2014
Exponent Prime Factor Dig. Year
376218748197524374963911 ~2014
376231820397524636407911 ~2014
3762587011937625870119112 ~2015
3762808696122576852176712 ~2015
376289107797525782155911 ~2014
376306563837526131276711 ~2014
376308066837526161336711 ~2014
3763686887322582121323912 ~2015
376377428397527548567911 ~2014
376393616037527872320711 ~2014
376405876437528117528711 ~2014
3764310649360228970388912 ~2016
376455487797529109755911 ~2014
376480212837529604256711 ~2014
376481122917529622458311 ~2014
3764849562760237593003312 ~2016
376492307997529846159911 ~2014
376498554237529971084711 ~2014
376520333397530406667911 ~2014
3765310271352714343798312 ~2016
376562161317531243226311 ~2014
376568969517531379390311 ~2014
376591865997531837319911 ~2014
3765980041322595880247912 ~2015
376603055637532061112711 ~2014
Home
4.724.182 digits
e-mail
25-04-13