Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
220400329914408006598311 ~2012
2204020889313224125335912 ~2013
220410243114408204862311 ~2012
220411111434408222228711 ~2012
2204118754717632950037712 ~2013
2204182516113225095096712 ~2013
220425066594408501331911 ~2012
220432123914408642478311 ~2012
220433786994408675739911 ~2012
2204380426113226282556712 ~2013
220445059434408901188711 ~2012
220448273771567...39748716 2023
220451456514409029130311 ~2012
2204655597713227933586312 ~2013
220469750394409395007911 ~2012
220493705994409874119911 ~2012
220504707594410094151911 ~2012
220518688314410373766311 ~2012
2205417805313232506831912 ~2013
220552584714411051694311 ~2012
220574545434411490908711 ~2012
220576003194411520063911 ~2012
220585449234411708984711 ~2012
2205886475313235318851912 ~2013
220606231314412124626311 ~2012
Exponent Prime Factor Dig. Year
2206172238113237033428712 ~2013
220629305514412586110311 ~2012
2206340809313238044855912 ~2013
220634174514412683490311 ~2012
220636419594412728391911 ~2012
220640064834412801296711 ~2012
2206439351352954544431312 ~2014
220648142634412962852711 ~2012
220653723594413074471911 ~2012
220658822034413176440711 ~2012
2206634652722066346527112 ~2014
2206744240113240465440712 ~2013
220686826794413736535911 ~2012
220691557914413831158311 ~2012
2207130733713242784402312 ~2013
220716971634414339432711 ~2012
220741368234414827364711 ~2012
220753798314415075966311 ~2012
220757000994415140019911 ~2012
220763331834415266636711 ~2012
220768609794415372195911 ~2012
220769793834415395876711 ~2012
220785705114415714102311 ~2012
220793559234415871184711 ~2012
220795762794415915255911 ~2012
Exponent Prime Factor Dig. Year
220805089914416101798311 ~2012
2208153520717665228165712 ~2013
220818121914416362438311 ~2012
220824262914416485258311 ~2012
2208282878352998789079312 ~2014
2208521374717668170997712 ~2013
220875101034417502020711 ~2012
220877876994417557539911 ~2012
220878890514417577810311 ~2012
220893203034417864060711 ~2012
2208935968113253615808712 ~2013
220897595514417951910311 ~2012
220906842234418136844711 ~2012
220915270434418305408711 ~2012
220920550914418411018311 ~2012
220923439434418468788711 ~2012
2209265714917674125719312 ~2013
2209351729713256110378312 ~2013
2209447546717675580373712 ~2013
220979742594419594851911 ~2012
2209899375735358390011312 ~2014
221002997034420059940711 ~2012
2210054176113260325056712 ~2013
221008083114420161662311 ~2012
2210146390717681171125712 ~2013
Exponent Prime Factor Dig. Year
221028754914420575098311 ~2012
221032295034420645900711 ~2012
221033608794420672175911 ~2012
2210458201313262749207912 ~2013
221053876794421077535911 ~2012
221060448714421208974311 ~2012
2210684416717685475333712 ~2013
221079770514421595410311 ~2012
221081462994421629259911 ~2012
221085106314421702126311 ~2012
221085718794421714375911 ~2012
2210982091313265892547912 ~2013
221115161514422303230311 ~2012
221124290634422485812711 ~2012
221126048514422520970311 ~2012
221131735914422634718311 ~2012
221133064434422661288711 ~2012
221145129714422902594311 ~2012
221145892914422917858311 ~2012
221149078194422981563911 ~2012
221156021394423120427911 ~2012
221159201994423184039911 ~2012
221165599194423311983911 ~2012
221169262914423385258311 ~2012
2211719221348657822868712 ~2014
Home
4.888.230 digits
e-mail
25-06-29